Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Getting Light to Bend Backwards

Uniquely sandwiched materials coax light to defy nature and skirt the laws of refraction

While developing new lenses for next-generation sensors, researchers have crafted a layered material that causes light to refract, or bend, in a manner nature never intended.

Refraction always bends light one way, as one can see in the illusion of a "bent" drinking straw when observed through the side of a glass. A new metamaterial crafted from alternating layers of semiconductors (indium-gallium-arsenic and aluminum-indium-arsenic) acts as a single lens that refracts light in the opposite direction.

Refraction is the reason that lenses have to be curved, a trait that limits image resolution. With the new metamaterial, flat lenses are possible, theoretically allowing microscopes to capture images of objects as small as a strand of DNA. The current metamaterial lens works with infrared light, but the researchers hope the technology will expand to other wavelengths in the future.

Earlier efforts have crafted metamaterials that bend light in a similar way, but this is the first to do so using a 3-dimensional structure and a metamaterial comprised entirely of semiconductors. Those traits will prove critical for incorporating the technology into devices such as chemical threat sensors, communications equipment and medical diagnostics tools.

The paper describing the technology appeared online Oct. 14, 2007, in Nature Materials.

The research was developed primarily at NSF's Mid-Infrared Technologies for Health and the Environment Engineering Research Center and NSF's Princeton Center for Complex Materials Materials Research Science and Engineering Center.

Additional information is available in the Princeton University press release at:

Josh Chamot | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>