Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel semiconductor structure bends light 'wrong' way -- the right direction for many applications

16.10.2007
A Princeton-led research team has created an easy-to-produce material from the stuff of computer chips that has the rare ability to bend light in the opposite direction from all naturally occurring materials. This startling property may contribute to significant advances in many areas, including high-speed communications, medical diagnostics and detection of terrorist threats.

A Princeton-led research team has created an easy-to-produce material from the stuff of computer chips that has the rare ability to bend light in the opposite direction from all naturally occurring materials. This startling property may contribute to significant advances in many areas, including high-speed communications, medical diagnostics and detection of terrorist threats.

The new substance is in a relatively new class of materials called "metamaterials," which are made out of traditional substances, such as metals or semiconductors, arranged in very small alternating patterns that modify their collective properties. This approach enables metamaterials to manipulate light in ways that cannot be accomplished by normal materials.

Previous metamaterials were two-dimensional arrangements of metals, which limited their usefulness. The Princeton invention is the first three-dimensional metamaterial constructed entirely from semiconductors, the principal ingredient of microchips and optoelectronics.

"To be useful in a variety of devices, metamaterials need to be three-dimensional," said Princeton electrical engineering professor Claire Gmachl, one of the researchers on the study. "Furthermore, this is made from semiconductors, which are extremely functional materials. These are the things from which true applications are made."

The research team, led by Princeton engineering graduate student Anthony Hoffman, will publish its findings online Oct. 14 in the journal Nature Materials. Other Princeton researchers on the team include graduate students Leonid Alekseyev, Scott Howard and Kale Franz; former Council of Science and Technology fellow Dan Wasserman, now at the University of Massachusetts-Lowell; and former electrical engineering professor Evgenii Narimanov, now at Purdue University. The team also includes collaborators from Oregon State University and telecommunications firm Alcatel-Lucent.

Light waves and other forms of electromagnetic radiation bend whenever they pass from one medium to another. This phenomenon, called refraction, is readily observable when a straw placed into a glass of water appears to be bent or broken. Lenses in reading glasses or a camera work because of refraction.

All materials have an index of refraction, which measures the degree and direction that light is bent as it passes through them. While materials found in nature have positive refractive indices, the material recently invented by Princeton researchers has a negative index of refraction.

In the case of the straw in a glass, normal water would make the underwater portion of the straw appear to bend toward the surface. If water were able to refract light negatively, as the newly invented semiconductor does, the segment of straw under the water would appear as if it were bending away from the surface

Far more than a neat optical illusion, negative refraction holds promise for the development of superior lenses. The positive refractive indices of normal materials necessitate the use of curved lenses, which inherently distort some of the light that passes through them, in telescopes and microscopes. Flat lenses made from materials that exhibit negative refraction could compensate for this aberration and enable far more powerful microscopes that can "see" things as small as molecules of DNA.

In addition, the Princeton metamaterial is capable of negative refraction of light in the mid-infrared region, which is used in a wide range of sensing and communications applications. Its unique composition results in less lost light than previous metamaterials, which were made of extremely small arrangements of metal wires and rings. The semiconductors that constitute the new material are grown from crystals using common manufacturing techniques, making it less complex, more reliable and easier to produce.

"Currently, the typical infrared lens is a massive object -- the setups are bulky," Hoffman said. "This new material may enable more compact mid-infrared optics because we now have a new material with an entirely new set of optical parameters in our toolkit."

The research is part of a multi-institutional research center called Mid-Infrared Technologies for Health and the Environment (MIRTHE). Researchers at MIRTHE are developing compact sensors that detect trace amounts of gases in the atmosphere and human breath. These could one day be used in devices that monitor air quality and enhance homeland security, as well as in non-invasive and on-the-spot medical tests for diabetes and lung disease.

The research relies on a new type of laser that emits mid-infrared light. Gmachl, who directs the MIRTHE project, said the new material could be used to make the lasers better and smaller.

Next, the team plans to incorporate the new metamaterial into lasers. Additionally, the researchers will continue to modify the material in attempts to make features ever smaller in an effort to expand the range of light wavelengths they are able to manipulate.

Hilary Parker | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>