Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum mechanics predicts unusual lattice dynamics of vanadium metal under high pressure

15.10.2007
A Swedish research team of Dr. Wei Luo & Professor Rajeev Ahuja and US team of Dr. Y. Ding & Prof. H.K. Mao have used theoretical calculations to understand a totally new type of high-pressure structural phase transition in Vanadium.

This phase was not found in earlier experiments for any element and compound. The findings are being published in this week’s Net edition of Proceedings of the National Academy of Science, PNAS.

The relation between electronic structure and the crystallographic atomic arrangement is one of the fundamental questions in physics, geophysics and chemistry. Since the discovery of the atomic nature of matter and its periodic structure, this has remained as one of the main questions regarding the very foundation of solid systems.

Scientists at Carnegie's Geophysical Laboratory, USA and Uppsala University, Sweden have discovered a new type of phase transition - a change from one form to another-in vanadium, a metal that is commonly added to steel to make it harder and more durable. Under extremely high pressures, pure vanadium crystals change their shape but do not take up less space as a result, unlike most other elements that undergo phase transitions. This work was appeared in the February 23, 2007 issue of Physical Review Letters.

Trying to understand why high-pressure vanadium uniquely has the record-high superconducting temperature of all known elements inspired us to study high-pressure structure of vanadium. Usually high superconductivity is directly linked to the lattice dynamics of material.

In present paper in PNAS, again a collaboration between Uppsala University and Carnegie's Geophysical Laboratory, USA, we have looked in to the lattice dynamics of vanadium metal and it shows a very unusual behavior under pressure. A huge change in the electronic structure is driving force behind this unusual lattice dynamics. Moreover, our findings provide a new explanation for the continuous rising of superconducting temperature in high-pressure vanadium, and could lead us to the next breakthrough in superconducting materials.

Rajeev Ahuja | EurekAlert!
Further information:
http://www.uu.se

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>