Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advance by chemists may lead to better displays on laptop computers, cell phones

19.09.2007
UCLA chemists working at the nanoscale have developed a new, inexpensive means of forcing luminescent polymers to give off polarized light and of confining that light to produce polymer-based lasers.

The research, which could lead to a brighter polarized light source for LEDs in laptop computers, cell phones and other consumer electronics devices, currently appears in the advance online edition of the journal Nature Nanotechnology.

The research was conducted by UCLA professors of chemistry and California NanoSystems Institute members Sarah Tolbert and Benjamin J. Schwartz, and colleagues, including Hirokatsu Miyata, a research scientist with Canon’s Nanocomposite Research division in Japan. The research is federally funded by the National Science Foundation and the Office of Naval Research and privately funded by Canon.

The researchers have succeeded in taking semiconducting polymers — plastics that consist of long chains of atoms that work as semiconductors — and stretching them out in a silica (glass) host matrix so that they have new optical properties.

“If you have polymer chains that can wiggle like spaghetti, it’s hard to make them all point in the same direction,” Tolbert said. “What we do is take tiny, nanometer-sized holes in a piece of glass and force the polymer chains into the holes. The holes are so small that the spaghetti chains have no space to coil up. They have to lie straight, and all the chains end up pointing in the same direction.”

Because the chains point in the same direction, they absorb polarized light and give off polarized light. Lining up the polymer chains also provides advantages for laser technology, because all the chains can participate in the lasing process, and they can make the light polarized without the need for any external optical elements, Tolbert said.

As a postdoctoral fellow, Schwartz was one of the original discoverers in the 1990s that lasers could be made out of randomly oriented semiconducting polymer chains.

“Our new materials exploit the fact that the polymer chains are all lined up to make them into lasers that function very differently from lasers made out of random polymers,” Schwartz said.

The manner in which the polymer chains incorporate into the porous glass of the silica matrix helps to confine the light in the material, enhancing the lasing process by producing what is known as a “graded-index waveguide.” In most lasers, confining the light is typically done with external mirrors.

“Our materials don’t need mirrors to function as lasers, because the material that’s lasing is also serving to confine the light,” Schwartz said.

In combination, the alignment of the polymer chains and the confinement of the light make it 20 times easier for the new materials to lase than if a randomly oriented polymer sample were used. And because polymers can be dissolved easily in solvents, they are inexpensive to process. The glass host matrix with the aligned nanoscale pores is also inexpensive to produce.

“Usually polarized and cheap don’t go together,” Tolbert said.

The research opens the possibility of additional applications for the new materials as a brighter polarized source for displays in products with LED-type displays, including cell phones, laptops and Palm Pilots.

“If you take an inexpensive light source with which you could excite the aligned polymer chains and get the chains to reemit, you potentially have a more efficient way to generate polarized light.” Tolbert said. “This would allow displays to be brighter with less power consumption, and you could get longer battery life.”

Tolbert has collaborated with Canon for years on the development of this class of new materials.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Materials Sciences:

nachricht Physicists gain new insights into nanosystems with spherical confinement
27.07.2017 | Johannes Gutenberg Universitaet Mainz

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>