Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safer and greener plastics - new recyclable compounds for consumer products

22.08.2007
With prices rising and environmental issues taking centre stage, EUREKA project E! 2819- FACTORY ECOPLAST is combining natural fibres with thermoplastics to create new recyclable compounds for consumer products and audio components.

As world markets expand, especially in developing countries, the need for new materials to satisfy production requirements continues to grow. At the same time, high oil prices push up the costs of petroleum derivatives such as polymers, in other words, plastics, used in innumerable consumer items.

One recent and very interesting line of research in the field of materials involves the combination of natural fibres with thermoplastics. Wood, flax, hemp and jute are just some of the natural materials now showing promise in this sort of use.

Partners in the EUREKA FACTORY ECOPLAST project decided to join efforts to develop a palletised compound suitable for injection moulding and extrusion processes, combining two or more material components in such a way that the resulting compound is better than any of the individual components alone.

“We need to develop new materials that are cheaper and better,” says FACTORY ECOPLAST coordinator Uros Znidaric of Slovenia’s ISOKON. “Ideally, such materials should also be more easily recyclable, reducing environmental impact.” Project partners looked at compounding conditions, palletising processes, deformation properties, compatibility between natural fibres and thermoplastics, injection moulding parameters and possible applications.

“Once we had enough information about different compound properties, we then focused on product selection,” says Znidaric. Final selection was based on key properties, including rigidity, weight and price. The ability to saw and drill the material was also considered, as well as wear and tear on machine equipment used in processing final products.

“The project was very successful,” says Znidaric. “We were able to define precise technological parameters for extrusion and an optimal palletising process for making compounds for injection moulding and extrusion. The new materials are suitable for use in the manufacture of a wide variety of products, including vacuum cleaner and lawn mower parts, storage boxes and even golf tees.”

Sounds good

Acoustic properties also became a focus of investigation. Znidaric explains, “Although wood is known for its good acoustics and is often used in musical instruments, today a lot of speaker boxes are made of injection-moulded polymers. We wanted to see if our new composite, which contains wood, might display better acoustic properties.”

FACTORY ECOPLASTIC results show that the wood fibre-filled composites developed under the project are indeed well suited to use in loudspeaker boxes. Znidaric says both damping of sound radiation and sound wave resistance for the material are comparable to those displayed by medium density fibreboard (MDF), one of the most commonly used materials in this application.

Further tests of the project’s new ‘EUREKA’ speaker boxes show higher frequency acoustic performance on a par with market leaders such as JVC and Nakamichi. The potential for FACTORY ECOPLASTIC commercialisation, say partners, is therefore very high.

Sally Horspool | alfa
Further information:
http://www.eureka.be
http://www.eureka.be/inaction/viewSuccessStory.do?docid=3554031

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>