Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safer and greener plastics - new recyclable compounds for consumer products

22.08.2007
With prices rising and environmental issues taking centre stage, EUREKA project E! 2819- FACTORY ECOPLAST is combining natural fibres with thermoplastics to create new recyclable compounds for consumer products and audio components.

As world markets expand, especially in developing countries, the need for new materials to satisfy production requirements continues to grow. At the same time, high oil prices push up the costs of petroleum derivatives such as polymers, in other words, plastics, used in innumerable consumer items.

One recent and very interesting line of research in the field of materials involves the combination of natural fibres with thermoplastics. Wood, flax, hemp and jute are just some of the natural materials now showing promise in this sort of use.

Partners in the EUREKA FACTORY ECOPLAST project decided to join efforts to develop a palletised compound suitable for injection moulding and extrusion processes, combining two or more material components in such a way that the resulting compound is better than any of the individual components alone.

“We need to develop new materials that are cheaper and better,” says FACTORY ECOPLAST coordinator Uros Znidaric of Slovenia’s ISOKON. “Ideally, such materials should also be more easily recyclable, reducing environmental impact.” Project partners looked at compounding conditions, palletising processes, deformation properties, compatibility between natural fibres and thermoplastics, injection moulding parameters and possible applications.

“Once we had enough information about different compound properties, we then focused on product selection,” says Znidaric. Final selection was based on key properties, including rigidity, weight and price. The ability to saw and drill the material was also considered, as well as wear and tear on machine equipment used in processing final products.

“The project was very successful,” says Znidaric. “We were able to define precise technological parameters for extrusion and an optimal palletising process for making compounds for injection moulding and extrusion. The new materials are suitable for use in the manufacture of a wide variety of products, including vacuum cleaner and lawn mower parts, storage boxes and even golf tees.”

Sounds good

Acoustic properties also became a focus of investigation. Znidaric explains, “Although wood is known for its good acoustics and is often used in musical instruments, today a lot of speaker boxes are made of injection-moulded polymers. We wanted to see if our new composite, which contains wood, might display better acoustic properties.”

FACTORY ECOPLASTIC results show that the wood fibre-filled composites developed under the project are indeed well suited to use in loudspeaker boxes. Znidaric says both damping of sound radiation and sound wave resistance for the material are comparable to those displayed by medium density fibreboard (MDF), one of the most commonly used materials in this application.

Further tests of the project’s new ‘EUREKA’ speaker boxes show higher frequency acoustic performance on a par with market leaders such as JVC and Nakamichi. The potential for FACTORY ECOPLASTIC commercialisation, say partners, is therefore very high.

Sally Horspool | alfa
Further information:
http://www.eureka.be
http://www.eureka.be/inaction/viewSuccessStory.do?docid=3554031

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>