Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticle technique could lead to improved semiconductors

08.08.2007
University of Texas at Austin researchers explore 'deep trap' phenomenon

Devices made from plastic semiconductors, like solar cells and light-emitting diodes (LEDs), could be improved based on information gained using a new nanoparticle technique developed at The University of Texas at Austin.

As electrical charges travel through plastic semiconductors, they can be trapped much like a marble rolling on a bumpy surface becomes trapped in a deep hole. These traps of charges are known as “deep traps,” and they are not well understood.

Deep traps can be desired, as in the case of plastic semiconductors used for memory devices, but they can also decrease the efficiency of the material to conduct electrical charges. In the case of solar cells, deep traps can decrease the efficiency of the conversion of light into electricity.

To further explore the deep trap phenomenon, a group of scientists led by Professors of Chemistry and Biochemistry Paul Barbara and Allen Bard developed a single-particle technique to study small portions of semiconductor material at the nanoscale.

The scientists reported their findings in the advanced online issue of the journal Nature Materials.

“Our results strongly suggest that deep traps are formed in plastic semiconductors by a charge induced chemical reaction,” says Dr. Rodrigo Palacios, lead author and post-doctoral fellow at the Center for Nano and Molecular Science and Technology. “These traps were not there in the uncharged pristine material.”

Deep traps could be caused by defects in the semiconductor material—either native to the material or introduced impurities—with special properties that encourage charge trapping. The traps also could develop over the life of the semiconductor.

Previous techniques used to study deep traps have generally involved completed semiconductor devices, which Palacios says creates complications due to the complexity of a functional device.

For the current study, Palacios used a conjugated polymer (plastic semiconductor) material known as F8BT, which is commercially available and has promising applications in organic LEDs and solar cells.

He produced particles of F8BT with diameters about one-ten thousandth that of a human hair. He then shone light on the nanoparticles and measured changes in intensity of the resulting fluorescence. (This type of semiconductor material takes in light energy and releases part of this energy as light of a different color.)

Palacios observed deep traps forming as he electrochemically charged and discharged the semiconductor nanoparticles. The deep traps led to decreases in light emission from the material.

“With our new technique, we got detailed information on how these deep traps are formed and how long they live,” says Palacios. “In principle, this kind of information can be used to improve devices made out of these conjugated polymers, designing new materials that can avoid these deep traps or materials that might be able to form these deep traps better.”

Dr. Rodrigo Palacios | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>