Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New joint replacement material developed at MGH put to first clinical use

New form of polyethylene will allow stronger, more versatile joint replacement

Massachusetts General Hospital (MGH) surgeons have performed the first total hip replacement using a joint socket lined with a novel material invented at the MGH. An advance over first-generation highly crosslinked polyethylene, which was also developed at MGH and significantly reduced a serious complication of early hip implants, the new material may be applied in replacements for a wider variety of joints in a more diverse group of patients.

“We think this material could be used for any joint in the body and in any implant design, even those demanding higher flexion and more mobility,” says Orhun Muratoglu, PhD, co-director of the Harris Orthopædics Biomechanics and Biomaterials Laboratory (OBBL) at MGH, who developed the new material in collaboration with scientists at the Cambridge Polymer Group.

Total replacements for hips and other joints were developed in the late 1960s, but it soon became apparent that hip implants could start loosening about 5 years after surgery and would eventually fail completely. A team led by William Harris, MD, DSc, now director emeritus of the MGH OBBL, investigated this complication and found that long-term friction of the implant’s head against the polyethylene-lined joint socket would break off small particles of polyethylene. The body’s immune system reacted against these foreign particles, eventually destroying adjacent bone tissue and causing the implant to loosen – a condition called periprosthetic osteolysis.

Harris and his colleagues, working with polymer chemists from MIT, found that high doses of radiation would “crosslink” the polyethylene, bonding molecules together to produce a much more durable material. The procedure also generates free radicals that could lead to oxidization and degradation of the implant, but the research team found that melting the material would eliminate free radicals. The first-generation highly crosslinked polyethylene was approved by the FDA for use in implants in 1999 and has been licensed to Zimmer, Inc.

However, the MGH researchers knew that the first-generation material had limitations in strength that made it unsuitable for some types of joint replacement implants. Subsequently, Muratoglu found that oxidation could be blocked by diffusing the antioxidant vitamin E throughout the polyethylene material. Both mechanical testing and animal studies have shown that the new material resists wear as well as the first generation and is much stronger. Vitamin-E-stabilized, highly crosslinked polyethylene has also received FDA approval for use in joint implants and has been licensed to both Zimmer and to Biomet, Inc., which made the implant used in the first surgical procedure on July 16.

“This material will allow us to offer our patients very long-term, high-performance joint replacements,” says Andrew A. Freiberg, MD, chief of the Arthoplasty Service in the MGH Department of Orthopædics, who performed the first implant with the new material. “It should be suitable for higher-stress applications in younger patients, those who are more active and those who are heavier.”

Sue McGreevey | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>