Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New joint replacement material developed at MGH put to first clinical use

24.07.2007
New form of polyethylene will allow stronger, more versatile joint replacement

Massachusetts General Hospital (MGH) surgeons have performed the first total hip replacement using a joint socket lined with a novel material invented at the MGH. An advance over first-generation highly crosslinked polyethylene, which was also developed at MGH and significantly reduced a serious complication of early hip implants, the new material may be applied in replacements for a wider variety of joints in a more diverse group of patients.

“We think this material could be used for any joint in the body and in any implant design, even those demanding higher flexion and more mobility,” says Orhun Muratoglu, PhD, co-director of the Harris Orthopædics Biomechanics and Biomaterials Laboratory (OBBL) at MGH, who developed the new material in collaboration with scientists at the Cambridge Polymer Group.

Total replacements for hips and other joints were developed in the late 1960s, but it soon became apparent that hip implants could start loosening about 5 years after surgery and would eventually fail completely. A team led by William Harris, MD, DSc, now director emeritus of the MGH OBBL, investigated this complication and found that long-term friction of the implant’s head against the polyethylene-lined joint socket would break off small particles of polyethylene. The body’s immune system reacted against these foreign particles, eventually destroying adjacent bone tissue and causing the implant to loosen – a condition called periprosthetic osteolysis.

Harris and his colleagues, working with polymer chemists from MIT, found that high doses of radiation would “crosslink” the polyethylene, bonding molecules together to produce a much more durable material. The procedure also generates free radicals that could lead to oxidization and degradation of the implant, but the research team found that melting the material would eliminate free radicals. The first-generation highly crosslinked polyethylene was approved by the FDA for use in implants in 1999 and has been licensed to Zimmer, Inc.

However, the MGH researchers knew that the first-generation material had limitations in strength that made it unsuitable for some types of joint replacement implants. Subsequently, Muratoglu found that oxidation could be blocked by diffusing the antioxidant vitamin E throughout the polyethylene material. Both mechanical testing and animal studies have shown that the new material resists wear as well as the first generation and is much stronger. Vitamin-E-stabilized, highly crosslinked polyethylene has also received FDA approval for use in joint implants and has been licensed to both Zimmer and to Biomet, Inc., which made the implant used in the first surgical procedure on July 16.

“This material will allow us to offer our patients very long-term, high-performance joint replacements,” says Andrew A. Freiberg, MD, chief of the Arthoplasty Service in the MGH Department of Orthopædics, who performed the first implant with the new material. “It should be suitable for higher-stress applications in younger patients, those who are more active and those who are heavier.”

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Materials Sciences:

nachricht Siberian scientists suggested a new method for synthesizing a promising magnetic material
23.01.2018 | Siberian Federal University

nachricht Complex tessellations, extraordinary materials
23.01.2018 | Technische Universität München

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks Industry & Economy
Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>