Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New joint replacement material developed at MGH put to first clinical use

24.07.2007
New form of polyethylene will allow stronger, more versatile joint replacement

Massachusetts General Hospital (MGH) surgeons have performed the first total hip replacement using a joint socket lined with a novel material invented at the MGH. An advance over first-generation highly crosslinked polyethylene, which was also developed at MGH and significantly reduced a serious complication of early hip implants, the new material may be applied in replacements for a wider variety of joints in a more diverse group of patients.

“We think this material could be used for any joint in the body and in any implant design, even those demanding higher flexion and more mobility,” says Orhun Muratoglu, PhD, co-director of the Harris Orthopædics Biomechanics and Biomaterials Laboratory (OBBL) at MGH, who developed the new material in collaboration with scientists at the Cambridge Polymer Group.

Total replacements for hips and other joints were developed in the late 1960s, but it soon became apparent that hip implants could start loosening about 5 years after surgery and would eventually fail completely. A team led by William Harris, MD, DSc, now director emeritus of the MGH OBBL, investigated this complication and found that long-term friction of the implant’s head against the polyethylene-lined joint socket would break off small particles of polyethylene. The body’s immune system reacted against these foreign particles, eventually destroying adjacent bone tissue and causing the implant to loosen – a condition called periprosthetic osteolysis.

Harris and his colleagues, working with polymer chemists from MIT, found that high doses of radiation would “crosslink” the polyethylene, bonding molecules together to produce a much more durable material. The procedure also generates free radicals that could lead to oxidization and degradation of the implant, but the research team found that melting the material would eliminate free radicals. The first-generation highly crosslinked polyethylene was approved by the FDA for use in implants in 1999 and has been licensed to Zimmer, Inc.

However, the MGH researchers knew that the first-generation material had limitations in strength that made it unsuitable for some types of joint replacement implants. Subsequently, Muratoglu found that oxidation could be blocked by diffusing the antioxidant vitamin E throughout the polyethylene material. Both mechanical testing and animal studies have shown that the new material resists wear as well as the first generation and is much stronger. Vitamin-E-stabilized, highly crosslinked polyethylene has also received FDA approval for use in joint implants and has been licensed to both Zimmer and to Biomet, Inc., which made the implant used in the first surgical procedure on July 16.

“This material will allow us to offer our patients very long-term, high-performance joint replacements,” says Andrew A. Freiberg, MD, chief of the Arthoplasty Service in the MGH Department of Orthopædics, who performed the first implant with the new material. “It should be suitable for higher-stress applications in younger patients, those who are more active and those who are heavier.”

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>