Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists advance organic semiconductor processing

28.06.2007
Work with innovative materials improves understanding, design of plastic electronics

Any machinist will tell you that a little grease goes a long way toward making a tool work better. And that may soon hold true for plastic electronics as well.

Carnegie Mellon University chemists have found that grease can make some innovative plastics vastly better electrical conductors. This discovery, published June 25 in Advanced Materials (www3.interscience.wiley.com/cgi-bin/fulltext/114282726/PDFSTART), outlines a chemical process that could become widely adopted to produce the next generation of tiny switches for transistors in radio frequency identification tags, flexible screen displays, and debit or key cards.

“This research brings us closer to developing organic semiconductors with electrical and physical properties far superior to those that exist today,” said principal investigator Richard D. McCullough, professor of chemistry and dean of the Mellon College of Science at Carnegie Mellon. “We were surprised and amazed with our findings.” The new process involves adding a little grease in two ways, say the investigators. The first step involves chemically combining an inherently conducting polymer (ICP) with a grease-like chemical. The second step involves depositing this hybrid material — called a block copolymer — onto a greased platform.

On the surface layer of a transistor, ICPs make good electrical conductors that provide the switch element for a transistor to turn on and off. But ICPs are by nature brittle. To counter this brittleness, scientists chemically link ICPs with grease-like, elastic polymers to make block copolymers.

“These block copolymers are very promising for creating future materials, such as lightweight, thin composite films for ebook readers that you could roll up like today’s newspapers,” said Genevieve Sauvé, a research associate who conducted the latest research under conditions similar to a commercial production setting.

While they provide much-needed flexibility, elastic polymers insulate rather than conduct electricity. Block copolymers that contain grease-like polymers are less effective electrical conductors than pure ICPs. Yet in the right processing setting, the opposite can hold true, the Carnegie Mellon scientists now report. It just depends how you treat a transistor’s silicon dioxide base layer.

As part of the current study, the Carnegie Mellon team tested four block copolymers, each with a different ratio of insulating elastic polymer to conducting polymer. When they applied thin films of these different polymers to untreated silicon dioxide, they found the greater the overall amount of insulating polymer in the final film, the worse that film performed in conducting an electric charge. The result is a flexible switch layer that doesn’t work very well.

But when the scientists pretreated the transistor’s silicon dioxide platform with OTS-8 — a chemical that creates a grease-like coating — they found that transistors incorporating any of the four block copolymers conducted an electric charge with remarkable ease, even when the insulating polymer constituted more than half of the applied block copolymer.

“Something amazing is happening at the molecular interface between our block copolymer and the OTS-8-treated surface so the block copolymers self-assemble with great precision,” Sauvé said. “In fact, we think that the grease-like, insulating polymer in the material and the grease-coated surface both somehow exert important effects in driving this self-assembly.”

Block copolymers with up to 57 percent insulating polymer performed 10 times better on OTS-8-treated surfaces than they did on untreated surfaces, according to the investigators. More importantly, the block copolymers were nearly equal in their performance to ICPs alone on treated surfaces, according to McCullough.

“This is the first report that copolymers are good organic semiconductors,” McCullough said. “These results mean that we could soon design devices that are both flexible and highly functional.”

OTS-8 appears to help the block copolymers assemble into nanowires that are much more highly organized than those that self-assemble on untreated silicon dioxide, according to Sauvé. (See available images)

The Carnegie Mellon team used block copolymers containing ICPs called regioregular polythiophenes (rr-P3HTs), which were initially described by McCullough in 1992. In subsequent research, McCullough’s laboratory has developed cost-efficient methods to produce rr-P3HTs so they can be put into solution and sprayed onto surfaces using ink-jet printing. McCullough has also shown that rr-3PHTs can be modified to attach to different surfaces. By chemically linking rr-P3HTs with other elastic polymers, McCullough’s group has also produced conductive plastics with a range of physical properties that could suit different device applications.

The insulating, elastic polymer used in this latest work is poly(methylacrylate), or PMA. Sauvé is using this system to evaluate nanowire assembly and conductive properties of block copolymers made with polymers other than PMA. These additional polymers are being developed by research scientist Mihaela Iovu in McCullough’s lab.

Eventually, Sauvé says, polymer chemists could replace a silicon dioxide base with a flexible plastic so consumers could roll up plastic displays.

Lauren Ward | EurekAlert!
Further information:
http://www.plextronics.com
http://www.chem.cmu.edu/groups/mccullough/research/block_copolymers/index.html

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>