Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Producing high performance spinel refractory cements using cheaper materials

14.06.2007
In situ phase evolution during preparation of spinel-containing refractory cements

Spinel (MgAl2O4) containing high alumina refractory cements are in high demand by the glass, cement and metallurgy industries. Spinel-based cements improve thermomechanical strength and minimise slag attack. In addition they can give outstanding improvements to lining life when compared with other refractory materials.

Spinel cements are normally produced by a sintering process starting with synthetic spinel and high alumina content cements. The problem with this is the high cost of sintered and electrofused spinel raw materials. A solution to this is to generate the spinel phase in-situ when making the refractory materials from active alumina and high purity dolomites.

Recent work from Araceli Elisabet Lavat and María Cristina Grasselli from Universidad Nacional del Centro de la Provincia de Buenos Aires seeks to better understand this potential new processing route.

The research work, published under AZojomo* (OARS)**, seeks to establish the feasibility of application of Agentinian dolomite raw materials in preparing refractory cements. The starting materials were fully characterized for particle size and chemical and mineral composition by laser granulometry, fluorescence, X-ray diffraction (XRD) and FTIR techniques.

The phase changes during cement synthesis up to 1450°C were studied by the combination of XRD and infrared spectroscopy. The research found the optimal temperature for an in-situ spinel formation was 1450°C.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azom.com/Details.asp"ArticleID=3833

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>