Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Now, self-healing materials can mimic human skin, healing again and again

12.06.2007
The next generation of self-healing materials, invented by researchers at the University of Illinois, mimics human skin by healing itself time after time. The new materials rely upon embedded, three-dimensional microvascular networks that emulate biological circulatory systems.

"In the same manner that a cut in the skin triggers blood flow to promote healing, a crack in these new materials will trigger the flow of healing agent to repair the damage," said Nancy Sottos, a Willett Professor of materials science and engineering, and the corresponding author of a paper accepted for publication in the journal Nature Materials, and posted on its Web site.

"The vascular nature of this new supply system means minor damage to the same location can be healed repeatedly," said Sottos, who also is a researcher at the university's Beckman Institute.

In the researchers' original approach, self-healing materials consisted of a microencapsulated healing agent and a catalyst distributed throughout a composite matrix. When the material cracked, microcapsules would rupture and release healing agent. The healing agent then reacted with the embedded catalyst to repair the damage.

"With repeated damage in the same location, however, the supply of healing agent would become exhausted," said Scott White, a Willett Professor of aerospace engineering and a researcher at the Beckman Institute. "In our new circulation-based approach, there is a continuous supply of healing agent, so the material could heal itself indefinitely."

To create their self-healing materials, the researchers begin by building a scaffold using a robotic deposition process called direct-write assembly. The process employs a concentrated polymeric ink, dispensed as a continuous filament, to fabricate a three-dimensional structure, layer by layer.

Once the scaffold has been produced, it is surrounded with an epoxy resin. After curing, the resin is heated and the ink - which liquefies - is extracted, leaving behind a substrate with a network of interlocking microchannels.

In the final steps, the researchers deposit a brittle epoxy coating on top of the substrate, and fill the network with a liquid healing agent.

In the researchers' tests, the coating and substrate are bent until a crack forms in the coating. The crack propagates through the coating until it encounters one of the fluid-filled "capillaries" at the interface of the coating and substrate. Healing agent moves from the capillary into the crack, where it interacts with catalyst particles.

If the crack reopens under additional stress, the healing cycle is repeated.

"Ultimately, the ability to achieve further healing events is controlled by the availability of active catalyst," said Kathleen S.
Toohey, a U. of I. graduate student and lead author of the paper.
"While we can pump more healing agent into the network, 'scar tissue'
builds up in the coating and prevents the healing agent from reaching the catalyst."

In the current system, the healing process stops after seven healing cycles. This limitation might be overcome by implementing a new microvascular design based on dual networks, the researchers suggest.

The improved design would allow new healing chemistries - such as two-part epoxies - to be exploited, which could ultimately lead to unlimited healing capability.

"Currently, the material can heal cracks in the epoxy coating - analogous to small cuts in skin," Sottos said. "The next step is to extend the design to where the network can heal 'lacerations' that extend into the material's substrate."

With Sottos, Toohey and White, the paper's other co-authors are Jennifer Lewis, the Thurnauer Professor of Materials Science and Engineering and interim director of the Frederick Seitz Materials Research Laboratory, and Jeffrey Moore, a William H. and Janet Lycan Professor of Chemistry and a researcher at the Frederick Seitz Materials Research Laboratory and Beckman Institute. White, Sottos and Moore co-invented self-healing plastic; Lewis and White pioneered direct ink writing of three-dimensional microvascular networks.

The work was funded by the U.S. Air Force Office of Scientific Research and the Beckman Institute.

James E. Kloeppel | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0611sottos.html

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>