Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon's David Sholl identifies new materials

14.05.2007
Helping make hydrogen a staple for consumer vehicles

Carnegie Mellon University's David S. Sholl is working to identify new materials that would help make hydrogen more stable and cost-efficient than fossil fuels. Increased concern about global warming and a need to conserve natural fuel sources prompted Carnegie Mellon researchers to find new, lightweight, low-cost hydrogen-storage materials.

"We are currently studying the use of metal hydrides, such as alanates and borohydrides, to find materials that could ultimately improve the efficiency of hydrogen cars and curb pollution," said Sholl, a professor of chemical engineering.

Essentially, what Sholl and his research team are trying to do is create a new material that will store larger amounts of hydrogen than can be held in a compressed gas tank, but will still be able to easily release the hydrogen to feed the fuel cell for cars of the future. Hydrogen-powered cars run on fuel cells that combine hydrogen and oxygen from the air to produce electricity. The only waste emitted is water.

By contrast, engines that burn gasoline emit pollutants, such as carbon dioxide, that cause global warming. U.S. vehicles consume 383 million gallons of gasoline a day — or about 140 billion gallons annually. That's about two-thirds of the total national oil consumption, half of which is imported from overseas.

"Hydrogen can potentially be produced from domestic resources without emitting carbon dioxide into the atmosphere, which is an attractive vision for a future fuel source," said Sholl, whose research is funded by the Department of Energy and performed in collaboration with Professor Karl Johnson from the University of Pittsburgh.

Once hydrogen is produced, transporting and storing it becomes a problem. As a gas, it requires a lot of energy to compress into a volume small enough to fit into a car. Sholl said that his research has used computational methods to screen a large number of possible storage materials, leapfrogging what could have been a decade of work to test the same materials in the lab.

Sholl argues that this research will help streamline hydrogen storage, cut energy costs and ultimately help hydrogen to replace gasoline.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>