Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New company learns from spider`s ability to spin

07.03.2002


A new spin-out from Oxford University, Spinox, is aiming to devise novel ways to copy spiders` ability to spin silks. The new silks may be used for sutures or woven material for surgical implants, protective clothing and in sports equipment.


Spinox has been set up to fully develop a spinning process to create high performance fibres from natural or artificial proteins based on the principles used by spiders and insects to create natural silk fibres. This approach - biomimetic (mimicking biology) spinning - is based on patents and expertise from leading spider and silk experts Professor Fritz Vollrath and Dr David Knight at Oxford`s Department of Zoology, who together published an authoritative overview of natural silk spinning in the leading science journal Nature last year.

High performance silk fibres are amazingly tough and may eventually out-compete oil-based polymer fibres, and illustrate how future materials can be based on sustainable, non-polluting processes inspired by nature. Natural spinning processes are highly energy efficient and do not require high temperatures, strongly acidic solutions or toxic organic solvents. They show excellent properties over a wide range of temperatures and can be made magnetic or conducting. A wide range of feedstocks might be used for biomimetic spinning including artificially synthesised or genetically engineered protein analogues and natural `silk-like` proteins obtained from wheat or rice grains. The company will seek to exploit its understanding of the underlying processing of molecular self-assembly to address other materials markets.

Dr Knight said: "Spinox is an excellent example of how we can use nature`s ingenuity to help us develop new processes and materials with quite exceptional properties in an eco-friendly way."


Tom Hockaday, a director of Isis Innovation Ltd, which supported the formation of Spinox, said: "This is fascinating technology with enormous commercial potential. We are pleased to have been involved in launching the business."

Nicola Old | alphagalileo

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>