Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramic research reaches new heights

05.03.2002


Materials scientists at the University of Wales Aberystwyth (UWA) are taking ceramics to new heights in order to determine the structure and stability of the materials which are used to construct aeroplane engines and the tiles for the space shuttle.



Dr Rudi Winter and colleagues from the Department of Physics at UWA are using a unique combination of techniques to study the materials at extreme temperatures which simulate those experienced when aircraft travel at high speed or when they decelerate rapidly.

"Ceramics have been used as heat shields in spacecraft re-entering into the atmosphere, and in aircraft engines because the burning temperatures are too high for most metals." says Dr Winter. "At present, ceramic linings are not used for normal civil aircraft, although metal-ceramic composites may be used one day for that purpose if the favourable mechanical properties of metals can be married with the good thermal behaviour of ceramics. That is why it is important to understand the structural response of these materials to mechanical and thermal impact, so that we learn to square the circle.".


Dr Winter and CASE Student Malcolm Coleman are therefore applying Nuclear Magnetic Resonance (NMR) together with a new non-contact thermometry technique for the very first time in order to study the stability and structure of these ceramics under real conditions, i.e. at very high temperatures up to 2200oC.

The aim of the project is to implement a novel technique for contactless temperature measurement (laser-absorption radiation thermometry - LART), on the ultra-high temperature aerodynamic levitation-based NMR probe - the only one of its kind in the UK - to determine the atomic structure of these ceramics.

"NMR allows us to determine the structure of a material (at an atomic level) around probe atoms in a material in a similar manner to which its close relative, MRI - magnetic resonance imaging - exploits the same physics to probe human "samples" in medicine." continues Dr Winter.

"The probe is able to heat the samples without needing a container to temperatures up to 2200oC by means of a 125W infrared laser. In order to determine the structural changes, the temperature will be measured and controlled with previously unreached precision using the LART technique which has been developed by our colleagues at the National Physical Laboratory (NPL)".

For Dr Andrew Levick in the Thermal Metrology Group at NPL, this work is a showcase for their new laser-absorption radiation thermometry (LART) technique which overcomes many of the problems inherent in conventional pyrometry techniques. They hope that Dr Winter will be able to demonstrate its feasibility in practical applications in order for them to be able to market it to the industry in the near future.

The three-year project has been made possible by a grant of £40,000 from the Engineering and Physical Sciences Research Council (EPSRC) and support from National Physical Laboratory.

Arthur Dafis | alphagalileo

More articles from Materials Sciences:

nachricht Combining the elements palladium and ruthenium for industry
22.09.2016 | National Institute for Materials Science

nachricht Defects at the spinterface disrupt transmission
21.09.2016 | Eberhard Karls Universität Tübingen

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>