Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramic research reaches new heights

05.03.2002


Materials scientists at the University of Wales Aberystwyth (UWA) are taking ceramics to new heights in order to determine the structure and stability of the materials which are used to construct aeroplane engines and the tiles for the space shuttle.



Dr Rudi Winter and colleagues from the Department of Physics at UWA are using a unique combination of techniques to study the materials at extreme temperatures which simulate those experienced when aircraft travel at high speed or when they decelerate rapidly.

"Ceramics have been used as heat shields in spacecraft re-entering into the atmosphere, and in aircraft engines because the burning temperatures are too high for most metals." says Dr Winter. "At present, ceramic linings are not used for normal civil aircraft, although metal-ceramic composites may be used one day for that purpose if the favourable mechanical properties of metals can be married with the good thermal behaviour of ceramics. That is why it is important to understand the structural response of these materials to mechanical and thermal impact, so that we learn to square the circle.".


Dr Winter and CASE Student Malcolm Coleman are therefore applying Nuclear Magnetic Resonance (NMR) together with a new non-contact thermometry technique for the very first time in order to study the stability and structure of these ceramics under real conditions, i.e. at very high temperatures up to 2200oC.

The aim of the project is to implement a novel technique for contactless temperature measurement (laser-absorption radiation thermometry - LART), on the ultra-high temperature aerodynamic levitation-based NMR probe - the only one of its kind in the UK - to determine the atomic structure of these ceramics.

"NMR allows us to determine the structure of a material (at an atomic level) around probe atoms in a material in a similar manner to which its close relative, MRI - magnetic resonance imaging - exploits the same physics to probe human "samples" in medicine." continues Dr Winter.

"The probe is able to heat the samples without needing a container to temperatures up to 2200oC by means of a 125W infrared laser. In order to determine the structural changes, the temperature will be measured and controlled with previously unreached precision using the LART technique which has been developed by our colleagues at the National Physical Laboratory (NPL)".

For Dr Andrew Levick in the Thermal Metrology Group at NPL, this work is a showcase for their new laser-absorption radiation thermometry (LART) technique which overcomes many of the problems inherent in conventional pyrometry techniques. They hope that Dr Winter will be able to demonstrate its feasibility in practical applications in order for them to be able to market it to the industry in the near future.

The three-year project has been made possible by a grant of £40,000 from the Engineering and Physical Sciences Research Council (EPSRC) and support from National Physical Laboratory.

Arthur Dafis | alphagalileo

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>