Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible electronics could find applications as sensors, artificial muscles

04.04.2007
Flexible electronic structures with the potential to bend, expand and manipulate electronic devices are being developed by researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Illinois at Urbana-Champaign. These flexible structures could find useful applications as sensors and as electronic devices that can be integrated into artificial muscles or biological tissues.

In addition to a biomedical impact, flexible electronics are important for energy technology as flexible and accurate sensors for hydrogen.

These structures were developed from a concept created by Argonne scientist Yugang Sun and a team of researchers at the University of Illinois led by John A. Rogers. The concept focuses on forming single-crystalline semiconductor nanoribbons in stretchable geometrical configurations with emphasis on the materials and surface chemistries used in their fabrication and the mechanics of their response to applied strains.

"Flexible electronics are typically characterized by conducting plastic-based liquids that can be printed onto thin, bendable surfaces," Sun said. "The objective of our work was to generate a concept along with subsequent technology that would allow for electronic wires and circuits to stretch like rubber bands and accordions leading to sensor-embedded covers for aircraft and robots, and even prosthetic skin for humans.

"We are presently developing stretchable electronics and sensors for smart surgical gloves and hemispherical electronic eye imagers," he added.

The team of researchers has been successful in fabricating thin ribbons of silicon and designing them to bend, stretch and compress like an accordion without losing their ability to function. The detailed results of these findings were published in the Journal of Materials Chemistry paper, " Structural forms of single crystal semiconductor nanoribbons for high-performance stretchable electronics," which is available online at http://www.rsc.org/Publishing/Journals/JM/article.asp?doi=b614793c.

Before coming to Argonne in August of 2006, Sun worked as a research associate under John A. Rogers at the University of Illinois at Urbana-Champaign where this project was first initiated. With the opening of Argonne's Center for Nanoscale Materials late last year, he was attracted by the facility's ability to enhance scientists' investigations in the properties of materials at nanoscale dimensions.

The Center for Nanoscale Materials at Argonne integrates nanoscale research with Argonne's existing capabilities in synchrotron X-ray studies, neutron-based materials research and electron microscopy with new capabilities in nanosynthesis, nanofabrication, nanomaterials characterization, and theory and simulation.

With the many resources at Argonne at his disposal, Sun plans to expand his research to focus on applications in other biological and chemical sensors.

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>