Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural polyester makes new sutures stronger, safer

26.03.2007
With the help of a new type of suture based on MIT research, patients who get stitches may never need to have them removed.

A biopolymer suture cleared last month by the FDA is made of materials that the human body produces naturally, so they can be safely absorbed once the wound is healed. They are also 30 percent stronger than sutures now used and very flexible, making them easier for surgeons to work with.

The sutures were developed by Tepha, Inc., a Cambridge company that hopes to use the same material to produce an array of absorbable medical devices, including stents, surgical meshes and possibly a heart valve scaffold, says Simon Williams, CEO of Tepha and a former MIT postdoctoral associate.

Williams said he envisions that the new sutures will be used for abdominal closures, which are prone to re-opening, and to stitch tendons and ligaments.

Developed using a method created at MIT, the absorbable sutures are the first made from material produced by genetically modified bacteria.

About 20 years ago, researchers in the laboratory of MIT biology professor Anthony Sinskey started swapping genes between different bacteria, hoping to achieve industrial production of desirable natural compounds synthesized by those bacteria.

The researchers focused their "biopolymer engineering" efforts on a group of genes that code for enzymes in a pathway that produces polyesters. Those polyesters can be broken down into metabolites naturally produced by humans, so they cause no harm when absorbed.

Once the genes were identified, they could be transferred into a strain of industrial E. coli that can produce large quantities of the strong, flexible polymer.

The FDA cleared the biopolymer sutures on Feb. 8, and Williams said Tepha plans to start marketing them soon, in partnership with another company.

"Not only is it technically and in an engineering sense a tremendous victory, but it's also a victory for society because this leads to new medical devices that can help people in new and novel ways," said Sinskey, who is one of the founders of Tepha and sits on its board of directors.

The new suture is the first of what the researchers hope will be many medical devices made from the natural polyesters.

"What we've found is that this one material seems to be finding a lot of use in different applications," because of its wide range of desirable properties, Williams said.

Tepha is now working on developing other medical devices, such as surgical meshes, multifilament fibers and stents. Ultimately, the researchers hope to develop an artificial scaffold that could be used to grow heart valves after being implanted in a patient, which would spare children with heart valve defects from undergoing repeated surgeries.

Tests of the device in animals have shown promise.

"We've been able to show we can produce a valve scaffold that functions better and can grow with the animal," Williams said. "If the valve can grow with the patient, you don't need the repeated surgeries."

Tepha, founded six years ago, is a spinoff of Metabolix, a company the researchers founded in 1992 to market bioplastics and biopolymer packaging materials.

Other current and former MIT researchers who helped develop the recombinant DNA methods used to create the biopolymer are JoAnne Stubbe, Novartis Professor of Chemistry and professor of biology, former postdoctoral associate Oliver Peoples and the late Professor Emeritus Satoru Masamune.

Original work at MIT on this technique was funded by the National Institutes of Health.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>