Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough for nano threads

27.02.2002


Europe is one step ahead of the US in the development of a new type of semiconductor structure consisting of incredibly thin nano threads. A Swedish team headed by Professor Lars Samuelson at the LTH, the Lund Institute of Technology, Lund University, has taken the lead in this field of research. “In nano threads, we can combine semiconductor materials that no one has previously been able to grow. This results in entirely new electrical properties: a single electron can be monitored and made to run a unidimensional electronic steeplechase,” says Professor Samuelson.



The question of who came in first has been exciting since this is such a hot scientific innovation. The article from the LTH team was submitted one month before an article from UC Berkeley and about seven weeks ahead of another article on the subject from a group at Harvard. The Lund team was also the first to be published in Applied Physics Letters (Vol 80, 1058, 2002), followed by two articles from the Berkeley team and Samuelson’s team, who published jointly in the February issue of Nano Letters. The Harvard team’s article appeared this week in Nature. The new findings have also recently been commented on as a news bulletin in Science (News of the Week).

In other words, its looks like the Americans are hot on the heels of the Swedish team. But this is an illusion. Now that all the material has been published it appears that the LTH scientists have mastered the technological processes with a precision that the Americans have yet to attain.


The classic way to form small structures on an electronic chip is to work in two dimensions. The material is placed in sheets on top of each other, and in the interface between the different semiconductor materials interesting electrical properties arise. But certain materials only permit partial unions with each other. This is the case with indium arsenide and indium phosphide. After an initial layer the crystalline process becomes uneven and defective when one material is to grow on the other. The new technique combines materials that have never been used together before.

For a couple of years leading research teams have been focusing on threadlike structures and have learned to form such threads. Nano threads have a diameter of 10-70 nanometers and can be a thousand times longer than their diameter. (One nm=one billionth of a meter) To make a thread as thick as a strand of hair would mean bundling together at least ten million nano threads! In semiconductor research there has also been a great deal of interest in so-called nano tubes of carbon, and last year scientists were able to present carbon nano tubes containing transistors and nano threads that both contained transistors and functioned as logical circuits.

But until now it has only been possible to construct carbon nano tubes and nano threads of one consistent material, which does not provide any interesting electronic effects. The present breakthrough involves a nano thread containing segments of different materials, indium arsenide and indium phosphide, for instance. The sharper the border is between these segments, the better the electric current going through the wire can be controlled. It is in this respect that the results from LTH are clearly superior. The Americans have attained a transitional zone of 15-20 nm, whereas the LTH team has brought that zone down to the equivalent of a single layer of atoms. What’s more, unlike the Americans, Samuelson’s team has managed to meter the electrical behavior of the new threads. It is no mean feat of technology to attach the relatively bulky connections used in conventional electronics to these delicate threads.

Samuelson’s research team—associated with the Nanometer Consortium at Lund University—start out with a nano-size particle of gold when they construct their threads. The particle can be placed on a base of indium, for instance. This is heated up, and the gold and indium form a melt. This process takes place in an ultra-vacuum. Arsenic is added, using a so-called molecular epitaxy beam, until the melt reaches saturation. When it is cooled, indium arsenide crystallizes under the gold. The gold is a catalyst that remains unchanged throughout the process. In the process of crystallization a pillar gradually grows under the gold. If phosphorous, for example, is now added to the indium melt, a new crystallization process starts, yielding indium phosphide.

“This opens the road to faster, more energy-efficient, and even tinier miniature electronics,” says Professor Samuelson. “Nano threads can also be constructed on top of two-dimensional structures and thus be incorporated in conventional ‘sandwich’ structures.”

“Entirely new materials will be produced. Of special interest is the fact that this new technology will probably make it possible to manufacture materials for magnetic storage, meaning that with these dimensions it will be feasible to attain terabit densities for storing information on a hard disc.”

“It will be possible to send an electrical impulse through a nano thread and thereby create a single photon for use in fiber-optical communication, for instance. This is a breakthrough in quantum optics and information transfer. Today it is possible to tap into an optical fiber and siphon off information without being discovered. But with digital ‘ones’ consisting not of clusters of photons but of a single photon, those on the receiving end will know immediately if they have been bugged, since the signal will disappear.”

“It will also be possible to construct exceedingly small light diodes and tiny and rapid light detectors. I can almost promise that by the end this year our lab will be able to create a single point source of light the size of, say, 25x25x25 nm. Such tiny light diodes can be of tremendous importance in the optical storage of information and for applications in medicine and biology,” says Professor Samuelson, adding: “Nano threads are not only of interest in electronics. They will play a role in the development of new materials and even in pure research in physics. Nano threads can be ‘test benches’ for how electrons and photons behave under new conditions.”

Göran Frankel | alphagalileo

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>