Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create new class of electronic components by bending zinc oxide nanowires

02.03.2007
Dubbed 'nano-piezotronics'

Researchers have taken advantage of the unique coupled semiconducting and piezoelectric properties of zinc oxide nanowires to create a new class of electronic components and devices that could provide the foundation for a broad range of new applications.

So far, the researchers have demonstrated field-effect transistors, diodes, sensors – and current-producing nanogenerators – that operate by bending zinc oxide nanowires and nanobelts. The new components take advantage of the relationship between the mechanical and electronic coupled behavior of piezoelectric nanomaterials, a mechanism the researchers call "nano-piezotronics™."

"Nano-piezotronics utilizes the coupling of piezoelectric and semiconducting properties to fabricate novel electronic components," said Zhong Lin Wang, a Regents Professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. "These devices could provide the fundamental building blocks that would allow us to create a new area of electronics."

For example, in a nano-piezotronic transistor, bending a one-dimensional zinc oxide nanostructure alters the distribution of electrical charges, providing control over the current flowing through it. By measuring changes in current flow through them, piezotronic sensors can detect forces in the nano- or even pico-Newton range. Other piezotronic sensors can determine blood pressure within the body by measuring the current flowing through the nanostructures. And, an electrical connection made to one side of a bent zinc oxide nanostructure creates a piezotronic diode that limits current flow to one direction.

The nano-piezotronic mechanism takes advantage of the fundamental property of nanowires or nanobelts made from piezoelectric materials: bending the structures creates a charge separation – positive on one side and negative on the other. The connection between bending and charge creation has also been used to create nanogenerators that produce measurable electrical currents when an array of zinc oxide nanowires is bent and then released

Development of a piezotronic gated diode based on zinc oxide nanowires was reported February 13 in the online advance issue of the journal Advanced Materials. Other nano-piezotronic components have been reported in the journals Nano Letters and Science. The research has been sponsored by the National Science Foundation (NSF), Defense Advanced Research Projects Agency (DARPA), the National Institutes of Health (NHI) and NASA.

"The future of nanotechnology research is in building integrated nanosystems from individual components," said Wang. "Piezotronic components based on zinc oxide nanowires and nanobelts have several important advantages that will help make such integrated nanosystems possible."

These advantages include:

Zinc oxide nanostructures can tolerate large amounts of deformation without damage, allowing their use in flexible electronics such folding power sources.

The large amount or deformation permits a large volume density of power output.

Zinc oxide materials are biocompatible, allowing their use in the body without toxic effects.

The flexible polymer substrate used in nanogenerators would allow implanted devices to conform to internal structures in the body.

Nanogenerators based on the structures could directly produce power for use in implantable systems.

In comparison to conventional electronic components, the nano-piezotronic devices operate much differently and exhibit unique characteristics.

In conventional field-effect transistors, for instance, an electrical potential – called the gate voltage – is applied to create an electrical field that controls the flow of current between the device's source and its drain. In the piezotronic transistors developed by Wang and his research team, the current flow is controlled by changing the conductance of the nanostructure by bending it between the source and drain electrodes. The bending produces a "gate" potential across the nanowire, and the resulting conductance is directly related to the degree of bending applied.

"The effect is to reduce the width of the channel to carry the current, so you can have a 10-fold difference in the conductivity before and after the bending," Wang explained.

Diodes, which restrict the flow of current to one direction, have also been created through nano-piezotronic mechanisms to take advantage of a potential barrier created at the interface between the electrode and the tensile (stretched) side of the nanowire by mechanical bending. The potential barrier created by the piezoelectric effect limits the follow of current to one direction.

Nanogenerators, which were announced in the April 14, 2006 issue of the journal Science, harvest energy from the environment around them, converting mechanical energy from body movement, muscle stretching, fluid flow or other sources into electricity. By producing current from the bending and releasing of zinc oxide nanowires, these devices could eliminate the need for batteries or other bulky sources for powering nanometer-scale systems.

Piezotronic nanosensors can measure nano-Newton (10 -9) forces by examining the shape of the structure under pressure. Implantable sensors based on the principle could continuously measure blood pressure inside the body and relay the information wirelessly to an external device similar to a watch, Wang said. The device could be powered by a nanogenerator harvesting energy from blood flow.

Other nanosensors can detect very low levels of specific compounds by measuring the current change created when molecules of the target are adsorbed to the nanostructure's surface. "Utilizing this kind of device, you could potentially sense a single molecule because the surface area-to-volume ratio is so high," Wang said.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>