Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s science discovery heralds new era in water repellent metals

23.02.2007
A new discovery by scientists at Queen’s University Belfast has changed the face of research into water-repellent “ultrahydrophobic” materials creating a wealth of potential practical applications.

Drs Graham Saunders and Steven Bell of Queen’s University School of Chemistry and Chemical Engineering, together with PhD student, Iain Larmour, have developed a very simple method for treating metals that results in extremely high hydrophobicity using readily available starting materials and standard laboratory equipment in a process that only takes a few minutes.

The significance of the discovery lies in the ease of fabrication and the flexibility of the method. Dr Saunders said, “There have been numerous attempts to emulate the extraordinary water repellency of lotus leaves, but very few synthetic surfaces can match these natural systems. Those that do are unsuitable for practical applications because they are difficult and costly to fabricate or can be applied only to a very limited number of materials. Our method produces robust surfaces displaying hydrophobicity that surpasses that of lotus leaves - ultrahydrophobicity. Furthermore the method is cheap and quick, and can be extended to a wide range of metals.”

It is the structure of lotus leaves – nanohairs on microbumps which are coated with a waxy substance – that causes the hydrophobicity and the Queen’s team’s discovery has successfully mimicked that surface structure. The process is simple. The objects to be treated are immersed in a metal-salt solution which coats them with a textured metal layer, thinner than a human hair, which resembles the structure of lotus leaves. The object is then dipped into a solution of a chemical surface-modifier, which covers the textured coating with a second, even thinner layer of water-repelling molecules. The resulting surface is so hydrophobic that water droplets deposited on the surface form almost perfect spheres and coated objects can be immersed for days but are found to be completely dry when they are pulled from the water.

The flexibility and simplicity of the approach means that the method can be applied to metal objects of any reasonable shape and size. Dr Bell said, “The team experimented with samples of various shapes and sizes and more complex metal objects, including a model of a pond skater made from copper. Pond skaters use superhydrophobic legs to walk on water, and our model, despite being 10x the mass of a pond skater of the same size, when treated, floated comfortably on water. Although this is a light-hearted example it does illustrate how readily our method can be applied.”

Future practical applications of this discovery are likely to include biomedical devices, liquid separation, and reducing turbulent flow in water-bearing pipes, among others.

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>