Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory stretches the limits of composite materials

02.02.2007
In an advance that could lead to composite materials with virtually limitless performance capabilities, a University of Wisconsin-Madison scientist has dispelled a 50-year-old theoretical notion that composite materials must be made only of "stable" individual materials to be stable overall.

Writing in the Feb. 2 issue of the journal Physical Review Letters, Engineering Physics Professor Walter Drugan proves that a composite material can be stable overall even if it contains a material having a negative stiffness, or one unstable by itself-as long as it is contained within another material that is sufficiently stable. "It's saying you're allowed to use a much wider range of properties for one of the two materials," he says.

Comprising everything from golf clubs and bicycle frames to bridge beams and airplane wings, composite materials - or materials made by combining multiple distinct materials - deliver advantages over conventional materials including high stiffness, strength, lightness, hardness, fracture resistance or economy. "The idea is that you have one material with some great properties, but it also has some disadvantages, so you combine it with another material to try to ameliorate the disadvantages and get the best of both," says Drugan.

Until now, materials engineers adhered to proven mathematical limits on composite performance, he says. "For example, if you give me two materials and one has one stiffness and the other has another stiffness, there are rigorous mathematical bounds that show that with these two materials, you cannot make a material that has a stiffness greater than this upper bound," says Drugan. "However, all these theoretical limits are based on the assumption that every material in the composite has a positive stiffness-in other words, that every material is stable by itself."

When slightly disturbed, stable materials, like those with positive stiffness, return easily to their original state. A slightly compressed spring, for example, bounces back after the compression force is removed. Unstable materials, like those with negative stiffness, quickly collapse or undergo a large, rapid deformation at the slightest perturbation. In an example from the structures field, if a vertical column supports a load that becomes too great, even a slight disturbance can cause the column to buckle.

The idea of incorporating a material with negative stiffness into a composite designed to be highly stiff originated with UW-Madison Wisconsin Distinguished Professor of Engineering Physics Roderic Lakes, says Drugan. Some six years ago, Lakes noticed that, in the mathematical formulas that predict how a composite will perform based on its component material properties, employing a material with a suitably chosen negative stiffness theoretically would yield an infinitely stiff composite.

Lakes took his ideas into the lab, where he created such a composite by embedding a material that behaved like one with negative stiffness in a matrix of a material with positive stiffness-somewhat like the shell of a golf ball surrounds its core. Through dynamic experiments, conducted under oscillatory loading, he showed that the composite stiffness was greater than the mathematical bounds indicated it could be, given the combination of materials.

Since Lakes' experiments were dynamic, and since dynamics often has a stabilizing effect, it remained unknown whether such material response could be obtained in the static loading case, which is practically important since many structural components are designed to support static loads.

Lakes and Drugan, who have had a continuing research collaboration on this topic, published a 2002 paper in the Journal of the Mechanics and Physics of Solids in which they showed that if a composite material containing a negative-stiffness phase could be stable, and if they tuned the negative stiffness the right way, the predicted composite property could be infinite stiffness for a broad range of composite materials.

Then Drugan set out to prove theoretically that such a material can be stable under static loading. "In general this is a very challenging problem, but I finally found a clean way to analyze it," he says.

Drugan hopes his proof will awaken materials engineers to a new, broad range of possibilities for making composite materials.

"If you're going to make a composite material from two different materials, you think about all the possible properties that each of the individual materials can have in order to obtain an outstanding overall performance," he says. "If you're suddenly able to greatly expand the range of properties that one of these materials can have, then you have a much wider range of possibilities for the overall composite. And that's what this research does. It says, 'You don't need to limit yourself to two stable materials anymore.'"

Walter Drugan | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>