Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocomposities yield strong, stretchy fibers

22.01.2007
Lycra-like materials were inspired by spider silk

Creating artificial substances that are both stretchy and strong has long been an elusive engineering goal. Inspired by spider silk, a naturally occurring strong and stretchy substance, MIT researchers have now devised a way to produce a material that begins to mimic this combination of desirable properties.

Such materials, known as polymeric nanocomposites, could be used to strengthen and toughen packaging materials and develop tear-resistant fabrics or biomedical devices. Professor Gareth McKinley, graduate student Shawna Liff and postdoctoral researcher Nitin Kumar worked at MIT's Institute for Soldier Nanotechnologies (ISN) to develop a new method for effectively preparing these materials. The research appears in the January issue of Nature Materials.

Engineers are already able to create materials that are either very strong or very stretchy, but it has been difficult to achieve both qualities in the same material. In the last few years scientists have determined that the secret behind the combined strength and flexibility of spider silk lies in the arrangement of the nano-crystalline reinforcement of the silk while it is being produced.

"If you look closely at the structure of spider silk, it is filled with a lot of very small crystals," says McKinley, a professor of mechanical engineering. "It's highly reinforced."

The silk's strength and flexibility come from this nanoscale crystalline reinforcement and from the way these tiny crystals are oriented towards and strongly adhere to the stretchy protein that forms their surrounding polymeric matrix.

Liff, a Ph.D. student in mechanical engineering, and Kumar, a former MIT postdoctoral associate, teamed up to figure out how to begin to emulate this nano-reinforced structure in a synthetic polymer (A polymer or plastic consists of long chains composed of small repeating molecular units). Numerous earlier unsuccessful attempts, tackling the same issue, relied on heating and mixing molten plastics with reinforcing agents, but Liff and Kumar took a different approach: They focused on reinforcing solutions of a commercial polyurethane elastomer (a rubbery substance) with nanosized clay platelets.

They started with tiny clay discs, the smallest they could find (about 1 nanometer, or a billionth of a meter thick and 25 nanometers in diameter). The discs are naturally arranged in stacks like poker chips, but "when you put them in the right solvent, these 'nanosized poker chips' all come apart," said McKinley.

The researchers developed a process to embed these clay chips in the rubbery polymer-first dissolving them in water, then slowly exchanging water for a solvent that also dissolves polyurethane. They then dissolved the polymer in the new mixture, and finally removed the solvent. The end result is a "nanocomposite" of stiff clay particles dispersed throughout a stretchy matrix that is now stronger and tougher.

Importantly, the clay platelets are distributed randomly in the material, forming a structure much like the jumble that results when you try to stuff matches back into a matchbox after they have all spilled out.

Instead of a neatly packed arrangement, the process results in a very disorderly "jammed" structure, according to McKinley. Consequently the nanocomposite material is reinforced in every direction and the material exhibits very little distortion even when heated to temperatures above 150 degrees Celsius.

In a Nature Materials commentary that accompanied the research paper, Evangelos Manias, professor of materials science and engineering at the University of Pennsylvania, suggests that "molecular composites" such as those developed by the MIT group are especially suitable for new lightweight membranes and gas barriers, because the hard clay structure provides extra mechanical support and prevents degradation of the material even at high temperatures. One possible use for such barriers is in fuel cells.

The U.S. military is interested in such materials for use in possible applications such as tear-resistant films or other body-armor components. The military is also interested in thinner, stronger packaging films for soldiers' MREs (meals ready to eat) to replace the thick and bulky packaging now used.

Fabric companies have also expressed interest in the new materials, which can be used to make fibers similar to stretchy compounds such as nylon or Lycra. The new approach to making nanocomposites can also be applied to biocompatible polymers and could be used to make stents and other biomedical devices, McKinley said.

The research was funded by the U.S. Army through MIT's Institute for Soldier Nanotechnologies and by the National Science Foundation. McKinley's team was assisted by technical staff at the ISN, including research engineer Steven Kooi, who helped prepare special samples for transmission electron microscopy.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>