Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new generation of medicinal products

What is a medicinal product? It is always the result of a subtle marriage between a compound (the active substance which treats a patient) and an appropriate excipient (a neutral substance in which the active substance is incorporated so that it can be absorbed by the body).

Thus the necessary tablet, capsule or syrup is obtained. But what would happen if biodegradable materials were used instead of these neutral excipients? This was already possible with some active substances, and can now be applied to many others! The team led by Didier Bourissou in the Laboratory for Fundamental and Applied Heterochemistry (CNRS/University Toulouse 3), has indeed managed to develop a novel synthetic process for these materials which significantly increases their diversity.

Some biodegradable polymers such as polyesters have already been employed as excipients in pharmacology. But this was only possible when they were mixed with certain active substances such as anticancer drugs or growth hormones. And in the field of surgery, the secret of absorbable sutures does indeed reside in the use of these same polyesters.

What are the principles underlying these "new generation" drugs? The biodegradable excipient containing the active substance can take the form of an implant – a 1 cm-long rod about one millimetre in diameter – which is inserted just under the skin. This procedure is performed by a doctor and only takes a few minutes. The specificity of these polyesters is that they can be hydrolyzed; in other words, broken down by water, which is unlucky for them, as our bodies are full of this substance. Thus the excipient gradually breaks down, over a week, a month or three months, depending on its type, releasing the active substance it contains. Hence the major advantage of the technique: biodegradable excipients enable the controlled administration of sustained-release drugs. This is of considerable benefit in the setting of chronic diseases, as it avoids frequent, repeated intakes of medicines. Another positive point is that this method reduces side effects; by circumventing the digestive tract, the active substance passes directly into the bloodstream. Thus it is also possible to reduce the quantity of drug administered, as there is no longer any need to allow for its partial destruction as it passes through the digestive tract.

In view of these advantages, why can the technique not be extended to a broader range of active substances? Because, until now, we only knew how to make these biodegradable polymers using two monomers (the basic components of polymers), lactide and glycolide. It is rather like making a bead necklace when only green and red beads are available. And in the same way that such a two-coloured necklace would not match all outfits, so the polyesters obtained cannot be combined with just any active substance. Without accounting for the fact that when using these little reactive lactide and glycolide monomers, industrial preparation of the polymers requires lengthy reaction times at high temperatures (e.g. several hours at 140°C-160°C).

This is where Didier Bourissou's team same up with the idea of changing the recipe and ingredients in order to facilitate access to these polyesters and increase their diversity. Many tests later, they achieved their goal. In collaboration with Isochem, they have developed a new synthetic process for these polymers. This involves new elementary building blocks, the O-carboxy anhydrides, which are much more reactive (i.e. more beads for our necklace), so that the polyesters can be prepared under much less harsh laboratory conditions (e.g. a few minutes at 25°C). And above all, a much wider variety of polymers is available, thus multiplying the chances that an active substance will find its appropriate biodegradable excipient. These promising results have given rise to the filing of two patents.

An unquestioned advance in the daily routine of patients, this technique might also be popular with the major pharmaceutical companies, as it would constitute an added-value for traditional drugs which could be presented in a sustained-release formulation.

Monica McCarthy | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>