Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metamaterials found to work for visible light

09.01.2007
For the first time ever, researchers at the U.S. Department of Energy’s Ames Laboratory have developed a material with a negative refractive index for visible light.

Ames Laboratory senior physicist Costas Soukoulis, working with colleagues in Karlsruhe, Germany, designed a silver-based, mesh-like material that marks the latest advance in the rapidly evolving field of metamaterials, materials that could lead to a wide range of new applications as varied as ultrahigh-resolution imaging systems and cloaking devices.

The discovery, detailed in the Jan. 5 issue of Science and the Jan. 1 issue of Optic Letters, and noted in the journal Nature, marks a significant step forward from existing metamaterials that operate in the microwave or far infrared – but still invisible –regions of the spectrum. Those materials, announced this past summer, were heralded as the first step in creating an invisibility cloak.

Metamaterials, also known as left-handed materials, are exotic, artificially created materials that provide optical properties not found in natural materials. Natural materials refract light, or electromagnetic radiation, to the right of the incident beam at different angles and speeds. However, metamaterials make it possible to refract light to the left, or at a negative angle. This backward-bending characteristic provides scientists the ability to control light similar to the way they use semiconductors to control electricity, which opens a wide range of potential applications.

“Left-handed materials may one day lead to the development of a type of flat superlens that operates in the visible spectrum,” said Soukoulis, who is also an Iowa State University Distinguished Professor of Liberal Arts and Sciences. “Such a lens would offer superior resolution over conventional technology, capturing details much smaller than one wavelength of light to vastly improve imaging for materials or biomedical applications,” such as giving researchers the power to see inside a human cell or diagnose disease in a baby still in the womb.

The challenge that Soukoulis and other scientists who work with metamaterials face is to fabricate them so that they refract light at ever smaller wavelengths. The “fishnet” design developed by Soukoulis’ group and produced by researchers Stefan Linden and Martin Wegener at the University of Karlsruhe was made by etching an array of holes into layers of silver and magnesium fluoride on a glass substrate. The holes are roughly 100 nanometers wide. For some perspective, a human hair is about 100,000 nanometers in diameter.

“We have fabricated for the first time a negative-index metamaterial with a refractive index of -0.6 at the red end of the visible spectrum (wavelength 780 nm),” said Soukoulis. “This is the smallest wavelength obtained so far.”

While the silver used in the fishnet material offers less resistance when subjected to electromagnetic radiation than the gold used in earlier materials, energy loss is still a major limiting factor. The difficulties in manufacturing materials at such a small scale also limit the attempts to harness light at ever smaller wavelengths.

“Right now, the materials we can build at THz and optical wavelengths operate in only one direction,” Soukoulis said, “but we’ve still come a long ways in the six years since negative-index materials were first demonstrated.”

“However, for applications to come within reach, several goals need to be achieved,” he added. “First, reduction of losses by using crystalline metals and/or by introducing optically amplifying materials; developing three-dimensional isotropic designs rather than planar structures; and finding ways of mass producing large-area structures.”

The Basic Energy Sciences Office of the DOE’s Office of Science funds Ames Laboratory’s research on metamaterials. Ames Laboratory, which is celebrating its 60th anniversary in 2007, is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Kerry Gibson | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>