Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers produce insulation with lowest thermal conductivity ever

Material prepared at University of Oregon leads to discovery

A new insulation material with the lowest thermal conductivity ever measured for a fully dense solid has been created at the University of Oregon and tested by researchers at three other U.S. institutions. While far from having immediate application, the principles involved, once understood, could lead to improved insulation for a wide variety of uses, the scientists say.

In a paper published online Dec. 14 on Science Express, in advance of regular publication in the journal Science, the scientists describe how they used a novel approach to synthesize various thicknesses of tungsten diselenide. This effort resulted in a random stacking of tungsten-diselenide planes (WSe2), possibly leading to a localization of lattice vibrations.

The resulting synthesized material, they report, resulted in thermal conductivity -- the rate at which heat flows through a material -- 30 times smaller than that for single-crystal WSe2 and a factor six smaller that the minimum level predicted by theoretical computations for the cross-plane thin films used in the experiments.

Surprisingly, creating a fully disordered structure by bombarding the films with ions to destroy the order in the two-dimensional planes actually increases thermal conductivity, said David C. Johnson, a professor of chemistry at the University of Oregon and member of the UO Materials Science Institute.

"The reason for the extraordinarily low thermal conductivity that we've now achieved is an unusual structure which is crystalline in two directions but has a subtle rotational disorder in the direction of low-heat conduction," Johnson said.

The material prepared in Johnson’s lab "is the closest thing that anyone has found to making a dense solid into a perfect thermal insulator," said co-author and corresponding investigator David G. Cahill, a professor of materials science and engineering at the University of Illinois at Urbana-Champaign. "This material would not be practical for insulating a refrigerator, the wall of a house or parts inside a turbine engine, but the new physical properties displayed by this material might some day point the way toward methods of creating more effective practical insulations."

The approach is a new alternative to one described by Cahill and others in separate journals in the last two years in which researchers reduced minimum thermal conductivity by manipulating thin films of metals and oxides by adjusting interfaces of the materials by only a few nanometers.

"Thermal conductivity is an important property in both conserving energy and in converting between forms of energy," Johnson said. "Obtaining low thermal conductivity in a thermoelectric material, which converts temperature gradients into electrical energy, increases efficiency."

The properties of Johnson's material were measured in Cahill's Illinois laboratory. The structure was analyzed at the Argonne National Laboratory in Argonne, Ill. Computational simulations and molecular modeling of the layered crystals was carried out by researchers at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y.

Jim Barlow | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>