Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers produce insulation with lowest thermal conductivity ever

18.12.2006
Material prepared at University of Oregon leads to discovery

A new insulation material with the lowest thermal conductivity ever measured for a fully dense solid has been created at the University of Oregon and tested by researchers at three other U.S. institutions. While far from having immediate application, the principles involved, once understood, could lead to improved insulation for a wide variety of uses, the scientists say.

In a paper published online Dec. 14 on Science Express, in advance of regular publication in the journal Science, the scientists describe how they used a novel approach to synthesize various thicknesses of tungsten diselenide. This effort resulted in a random stacking of tungsten-diselenide planes (WSe2), possibly leading to a localization of lattice vibrations.

The resulting synthesized material, they report, resulted in thermal conductivity -- the rate at which heat flows through a material -- 30 times smaller than that for single-crystal WSe2 and a factor six smaller that the minimum level predicted by theoretical computations for the cross-plane thin films used in the experiments.

Surprisingly, creating a fully disordered structure by bombarding the films with ions to destroy the order in the two-dimensional planes actually increases thermal conductivity, said David C. Johnson, a professor of chemistry at the University of Oregon and member of the UO Materials Science Institute.

"The reason for the extraordinarily low thermal conductivity that we've now achieved is an unusual structure which is crystalline in two directions but has a subtle rotational disorder in the direction of low-heat conduction," Johnson said.

The material prepared in Johnson’s lab "is the closest thing that anyone has found to making a dense solid into a perfect thermal insulator," said co-author and corresponding investigator David G. Cahill, a professor of materials science and engineering at the University of Illinois at Urbana-Champaign. "This material would not be practical for insulating a refrigerator, the wall of a house or parts inside a turbine engine, but the new physical properties displayed by this material might some day point the way toward methods of creating more effective practical insulations."

The approach is a new alternative to one described by Cahill and others in separate journals in the last two years in which researchers reduced minimum thermal conductivity by manipulating thin films of metals and oxides by adjusting interfaces of the materials by only a few nanometers.

"Thermal conductivity is an important property in both conserving energy and in converting between forms of energy," Johnson said. "Obtaining low thermal conductivity in a thermoelectric material, which converts temperature gradients into electrical energy, increases efficiency."

The properties of Johnson's material were measured in Cahill's Illinois laboratory. The structure was analyzed at the Argonne National Laboratory in Argonne, Ill. Computational simulations and molecular modeling of the layered crystals was carried out by researchers at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Materials Sciences:

nachricht Siberian scientists suggested a new method for synthesizing a promising magnetic material
23.01.2018 | Siberian Federal University

nachricht Complex tessellations, extraordinary materials
23.01.2018 | Technische Universität München

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>