Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Butterfly wing scales provide template for complex photonic structures

13.12.2006
By replicating the complex micron- and nanometer-scale photonic structures that help give butterfly wings their color, researchers have demonstrated a new technique that uses biotemplates for fabricating nanoscale structures that could serve as optical waveguides, optical splitters and other building blocks of photonic integrated circuits.

Using a low-temperature atomic layer deposition (ALD) process, materials scientists at the Georgia Institute of Technology produced aluminum oxide (alumina) replicas of wing scales from a Morpho peleides butterfly, a bright blue insect native to the rain forests of Central and South America. The artificial wing scales faithfully replicated the physical features and optical properties of the natural wing scales that served as templates.

"We can never come close to the richness of the structures that nature can make," said Zhong Lin Wang, Regents’ Professor in the Georgia Tech School of Materials Science and Engineering. "We want to utilize biology as a template for making new material and new structures. This process gives us a new way to fabricate photonic structures such as waveguides."

The work has been reported in the American Chemical Society journal Nano Letters. The research was supported by the Defense Advanced Research Projects Agency (DARPA), the U.S. National Science Foundation (NSF) and the U.S. National Institutes of Health (NIH). The Day Butterfly Center at Callaway Gardens in Pine Mountain, Ga., provided the Morpho peleides butterfly specimen.

To create their artificial structures, Wang and colleagues Xudong Wang and Jingyun Huang deposited uniform layers of alumina onto butterfly wing scales one Angstrom at a time using the ALD process. (Huang was a visiting scientist from Zhejiang University, China). They were able to precisely control the thickness of the coating with the number of deposition cycles to which each wing scale template was subjected.

After the deposition, the coated scales were heated to 800 degrees Celsius to crystallize the alumina – and burn off the original butterfly wing scale. The resulting polycrystalline alumina was stronger than the original amorphous material deposited with the ALD process.

The artificial butterfly wing scale is a three-dimensional structure that retains the features of the original. That includes hollow tubular structures that split off at regular intervals, providing the potential for use as optical waveguides and optical splitters – and even as microfluidic or microreactor devices.

"Owing to the excellent uniformity of the alumina film, both the large-scale arrangement of the wing scales and the nanometer-scale periodic structures are perfectly preserved after this vigorous template removal process," the authors wrote. "The alumina replicas of the wing scales exhibit the same shape, orientation, and distribution as their ‘parent’ scales."

Butterfly wing colors are produced by a combination of pigments and reflection from photonic structures. "If you examine the wing scale, you see all of the intricate micron-scale and nanometer-scale features that determine the optical properties," Wang noted. "From a physical point of view, this is a very regular photonic structure with regular gaps that produce the bluish color."

The artificial wing scales produced by the researchers also reflect bluish light, though the color is of slightly longer wavelength than that of the original butterfly. That’s because the chemical pigments that contribute to the original butterfly color are no longer present, and – Wang surmises – because the researchers had to dry the wing scales prior to deposition, which likely altered the size of their photonic structures.

Wang and his colleagues discovered that because the thickness of the alumina coating controlled the size and periodicity of the photonic structures, increasing the thickness shifted the reflected light toward the red portion of the spectrum. For instance, by increasing the coating thickness from 10 to 40 nanometers, the color reflected by the alumina wing scales shifted from the original blue to green, yellow, orange and eventually pink, Wang noted.

The complex nature of the structures would be impossible to create with any other process, he said. "This could provide a new way to make nanostructures that are replicated from biology," he said. "It allows us to fabricate truly tubular, three-dimensional interconnected nanostructures in a one-step process."

The atomic layer deposition process could potentially be used with other materials such as titanium oxide, and to replicate other biologically-inspired structures.

"As long as there is a void that the vapor phase can penetrate, an entire structure can be replicated using the ALD process," Wang said. "Regardless of what the substrate is and what the three-dimensional shape is, you can control it to the Angstrom level."

Next on the agenda may be the water strider, an insect that uses unique hydrophobic feet to skim gracefully across the surface of water. Wang would like to study the possibility of replicating the micron-scale structures of the insect’s feet, but he has found that obtaining samples may be difficult.

"I was trying to catch one of them, but they are very quick," he admitted. "I almost fell into the water."

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>