Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibers used in bullet-proof vests quadruple toughness of dental composites

08.12.2006
Some strength and durability tests reported are not currently required by the US Food and Drug Administration

Vistasp Karbhari, a professor of structural engineering at UC San Diego, has developed fiber-reinforced polymer composites as strong, lightweight materials for aerospace, automotive, civil and marine applications, so he thought, “If they work so well in highway bridges, why not dental bridges"”

In a paper scheduled for publication in Dental Materials, Karbhari and Howard Strassler, a professor and director of Operative Dentistry at the University of Maryland Dental School, report the results of detailed engineering tests on dental composites containing glass fibers as well as the type of polyethylene fibers used in bullet-proof vests.

Karbhari and Strassler found that the toughness of fiber-reinforced dental materials depends on the type and orientation of the fiber used. Their report, available at the Dental Materials website, shows that braided polyethylene fibers performed the best, boosting toughness by up to 433 percent compared to the composite alone.

Many of the strength and durability tests reported in the paper are not currently required by the U.S. Food and Drug Administration (FDA), which regulates dental composites as class II prescription devices. The agency requires eight minimum tests plus biocompatibility tests to ensure that dental composites are safe and nontoxic.

“Fiber-reinforced composites are now widely used in the aerospace and automotive industries and the experience we’ve gained in these applications can be applied in a more rigorous way in dentistry and medicine to tailor performance to exacting requirements,” said Karbhari. Dentists began using particle filled composites 10 years ago as an alternative to ceramics and mercury-containing metal amalgams. Strassler selected three commercially available fiber-reinforced composites for analysis.

Dental composites made with glass or polyethylene fibers are sold as pliable ribbons that dentists mold into the required shape and then harden with curing lights. “Many reinforcing fibers can add strength and toughness to dental composites,” Karbhari said, “but if they are improperly aligned they could actually accelerate damage to existing teeth.”

“What’s been missing until now is a rigorous, reproducible way to test the durability and resistance to breakage for these materials,” Strassler said. “Makers of fiber-reinforced dental composites need a much better understanding of how their products actually perform as part of a restoration, crown, or bridge, and this study provides an analytical standard with which all composites should be evaluated in the future.”

The three products tested were a 3-millimeter-wide ribbon of unidirectional glass fibers, a 3-millimeter-wide ribbon of polyethylene fibers woven in a figure-8 stop-stitch leno-weave, and a 4-millimeter wide ribbon of polyethylene fibers woven in a biaxial braid. The resistance to breakage and various measures of toughness of the three preparations were compared to the dental composite alone.

“All three fiber fabrics dramatically increased the durability and strength of the dental composite, but the polyethylene fibers braided in a biaxial ribbon performed best,” said Karbhari. “The tests required by the FDA indicate that fiber-reinforced composites are safe, but those tests are only partially informative. Our analyses show that we can optimize these materials to match and improve performance of teeth, for greater durability, toughness, and resistance to breakage.”

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>