Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fibers used in bullet-proof vests quadruple toughness of dental composites

Some strength and durability tests reported are not currently required by the US Food and Drug Administration

Vistasp Karbhari, a professor of structural engineering at UC San Diego, has developed fiber-reinforced polymer composites as strong, lightweight materials for aerospace, automotive, civil and marine applications, so he thought, “If they work so well in highway bridges, why not dental bridges"”

In a paper scheduled for publication in Dental Materials, Karbhari and Howard Strassler, a professor and director of Operative Dentistry at the University of Maryland Dental School, report the results of detailed engineering tests on dental composites containing glass fibers as well as the type of polyethylene fibers used in bullet-proof vests.

Karbhari and Strassler found that the toughness of fiber-reinforced dental materials depends on the type and orientation of the fiber used. Their report, available at the Dental Materials website, shows that braided polyethylene fibers performed the best, boosting toughness by up to 433 percent compared to the composite alone.

Many of the strength and durability tests reported in the paper are not currently required by the U.S. Food and Drug Administration (FDA), which regulates dental composites as class II prescription devices. The agency requires eight minimum tests plus biocompatibility tests to ensure that dental composites are safe and nontoxic.

“Fiber-reinforced composites are now widely used in the aerospace and automotive industries and the experience we’ve gained in these applications can be applied in a more rigorous way in dentistry and medicine to tailor performance to exacting requirements,” said Karbhari. Dentists began using particle filled composites 10 years ago as an alternative to ceramics and mercury-containing metal amalgams. Strassler selected three commercially available fiber-reinforced composites for analysis.

Dental composites made with glass or polyethylene fibers are sold as pliable ribbons that dentists mold into the required shape and then harden with curing lights. “Many reinforcing fibers can add strength and toughness to dental composites,” Karbhari said, “but if they are improperly aligned they could actually accelerate damage to existing teeth.”

“What’s been missing until now is a rigorous, reproducible way to test the durability and resistance to breakage for these materials,” Strassler said. “Makers of fiber-reinforced dental composites need a much better understanding of how their products actually perform as part of a restoration, crown, or bridge, and this study provides an analytical standard with which all composites should be evaluated in the future.”

The three products tested were a 3-millimeter-wide ribbon of unidirectional glass fibers, a 3-millimeter-wide ribbon of polyethylene fibers woven in a figure-8 stop-stitch leno-weave, and a 4-millimeter wide ribbon of polyethylene fibers woven in a biaxial braid. The resistance to breakage and various measures of toughness of the three preparations were compared to the dental composite alone.

“All three fiber fabrics dramatically increased the durability and strength of the dental composite, but the polyethylene fibers braided in a biaxial ribbon performed best,” said Karbhari. “The tests required by the FDA indicate that fiber-reinforced composites are safe, but those tests are only partially informative. Our analyses show that we can optimize these materials to match and improve performance of teeth, for greater durability, toughness, and resistance to breakage.”

Rex Graham | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

nachricht Scientists develop a semiconductor nanocomposite material that moves in response to light
18.10.2016 | Worcester Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>