Agile plastics change shape with heat

The new materials, known as “triple-shape materials,” can assume three different shapes, each shape depending on how much heat is applied.

This landmark achievement comes from the laboratories of chemical engineer Robert Langer of MIT and polymer chemist Andreas Lendlein of the Helmholtz Institute in Teltow, Germany.

“Triple-shape materials can switch from shape A, then to shape B, and on to shape C,” Lendlein explained. “Using two, rather than just one, shape-changes offers unique opportunities for applications such as 'intelligent' stents, or 'smart' fastener systems” for use in assembling commercial products, he said.

An “intelligent stent” made of the new class of plastics could assume three different shapes to facilitate medical procedures: It would assume a handy oval shape for insertion, then a fully inflated round shape for temporary use inside a blood vessel, duct or other cylindrical organ, and lastly, a compressed cylindrical shape for easy removal.

The triple-shape-shift from shape A to B to C could also have applications in industry. In factories, changeable plastic fasteners could be implanted in, or attached to, one part, then heated to extend an arm to another part. With further heating, the fastener would change shape yet again to lock itself in place. In effect, it would be an automated form of self-assembly.

Langer, an MIT Institute Professor, said, “It's like a new principle in materials, and it will be producing new opportunities. I imagine that if you had things you want to install, and then remove,” the ability to change their shapes at will could be useful. “It's the first time I've seen something that will go from shape A to shape B and then shape C.”

A paper on the work will appear in the Nov. 28 issue of the Proceedings of the National Academy of Sciences. Langer and Lendlein's coauthors are Ph.D. student Ingo Bellin and polymer chemist Steffen Kelch. Both work with Lendlein, who is leading the Center for Biomaterial Development in Teltow, near Berlin.

In earlier work, Lendlein and Langer invented a dual-shape class of materials, leading to what they call a “smart suture” that changes shape as needed for surgery (web.mit.edu/newsoffice/2002/langer-suture.html), and they introduced a plastic that changes shape when activated by light (web.mit.edu/newsoffice/2005/smart-plastics.html). In November 2005 they received the World Technology Network Award for these achievements.

Media Contact

Elizabeth A. Thomson MIT News Office

More Information:

http://www.mit.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors