Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Agile plastics change shape with heat

21.11.2006
Researchers at MIT and the Helmholtz Association of German Research Centers have invented a class of materials so remarkable for their agility in changing shape as they react to heat, they might be described as acrobatic plastics.

The new materials, known as "triple-shape materials," can assume three different shapes, each shape depending on how much heat is applied.

This landmark achievement comes from the laboratories of chemical engineer Robert Langer of MIT and polymer chemist Andreas Lendlein of the Helmholtz Institute in Teltow, Germany.

"Triple-shape materials can switch from shape A, then to shape B, and on to shape C," Lendlein explained. "Using two, rather than just one, shape-changes offers unique opportunities for applications such as 'intelligent' stents, or 'smart' fastener systems" for use in assembling commercial products, he said.

An "intelligent stent" made of the new class of plastics could assume three different shapes to facilitate medical procedures: It would assume a handy oval shape for insertion, then a fully inflated round shape for temporary use inside a blood vessel, duct or other cylindrical organ, and lastly, a compressed cylindrical shape for easy removal.

The triple-shape-shift from shape A to B to C could also have applications in industry. In factories, changeable plastic fasteners could be implanted in, or attached to, one part, then heated to extend an arm to another part. With further heating, the fastener would change shape yet again to lock itself in place. In effect, it would be an automated form of self-assembly.

Langer, an MIT Institute Professor, said, "It's like a new principle in materials, and it will be producing new opportunities. I imagine that if you had things you want to install, and then remove," the ability to change their shapes at will could be useful. "It's the first time I've seen something that will go from shape A to shape B and then shape C."

A paper on the work will appear in the Nov. 28 issue of the Proceedings of the National Academy of Sciences. Langer and Lendlein's coauthors are Ph.D. student Ingo Bellin and polymer chemist Steffen Kelch. Both work with Lendlein, who is leading the Center for Biomaterial Development in Teltow, near Berlin.

In earlier work, Lendlein and Langer invented a dual-shape class of materials, leading to what they call a "smart suture" that changes shape as needed for surgery (web.mit.edu/newsoffice/2002/langer-suture.html), and they introduced a plastic that changes shape when activated by light (web.mit.edu/newsoffice/2005/smart-plastics.html). In November 2005 they received the World Technology Network Award for these achievements.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>