Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-protection for food packaging

01.02.2002


Oxygen and light can alter the taste of foodstuffs. Manufacturers of packaging materials therefore try to protect contents from their influence. The latest approach is to use natural dyes in transparent plastic wrappers that selectively filter light.



Light and oxygen adversely affect the quality of most foodstuffs. In combination they cause various ingredients to undergo photo-oxidation. Fatty food substances become rancid and milk products develop an unpleasant "light-induced" taste. Certain ingredients such as the plant pigment chlorophyll or riboflavin (vitamin B2), exacerbate the loss of product quality due to their catalytic effect: they absorb light and transfer this energy to the oxygen, making it more reactive.

Manufacturers of food packaging are tackling these processes with two strategies: they either exclude oxygen by sealing packaging with nitrogen or they prevent exposure to light. The disadvantage of the first method is that the plastic must have a special sealing layer to prevent atmospheric oxygen permeating into the packaging. With the second method, the contents are only partially or not visible. But being able to see through the packaging is frequently desired for product presentation to customers.


At the Fraunhofer Institute for Process Engineering and Packaging IVV, researchers have adopted a new approach: they dye transparent plastic films with the very substances that are catalysts for photo-oxidation. In this way, packaging material remains almost transparent yet they filter out light in the critical wavelength ranges. One product that exemplifies this is olive oil: "Cold-pressed olive oils of superior quality are dark because they contain large quanities of chlorophyll. This tone is what the customer wants to see", says Dr. Gertraud Goldhan, director of the Functional Films business field at the IVV. "Dying plastic bottles green using chlorophyll not only serves to emphasize this olive-green tone - the oil can also be stored for a considerably longer period of time under exposure to light."

Using chlorophyll, the institut`s scientists have already been able to dye a whole range of different plastic materials used for packaging foodstuffs. To do this they employ a wide range of techniques: depending on the type and thickness of the film and the desired intensity of color, the chlorophyll is either added to the raw plastic prior to processing or it is applied to the prepared film as a coating. In multi-layered composite films it is incorporated into the laminating adhesives. There are also plans to develop printing inks containing the natural pigments. "Every product requires its own customized packaging", summarizes Goldhahn. "With the experience gained, we are now much more oriented towards industrial manufacturers."

Dr. Johannes Ehrlenspiel | Fraunhofer-Gesellschaft - Presse

More articles from Materials Sciences:

nachricht New Multiferroic Materials from Building Blocks
29.09.2016 | National Institute for Materials Science

nachricht Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”
29.09.2016 | National Institute for Materials Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>