Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire resistant plastics

01.02.2002


The use of halogenated flame retardants in plastics is steadily declining because they are volatile, pose an environmental risk and are difficult to recycle. Microcapsules, fibers and melamine resin foams represent some of the chief alternatives.

As successfully as the endless variety of plastics have established themselves on the market, these multifaceted materials show another face when it comes to fire. They melt and feed the flames like the petroleum from which they were ultimately produced. As a preventative measure, a variety of flame retardants are added to plastics, yet this introduces a number of problems. Additives often alter the mechanical properties and electrical insulating effect of plastics. Especially brominated and chlorinated additives migrate through the material and can damage metal and electronic components. Moreover, they represent a health risk and interfere with the recycling process. Yet fire safety regulations require the use of flame retardants.

The Fraunhofer Institute for Applied Polymer Research IAP is developing combustion-resistant and self-extinguishing plastics. Last November members of the working group, directed by Dr. Gerald Rafler, received the Friedrichs Prize for new technologies, along with 15,000 Euro in prize money, for their innovations and development of new materials. The prize is awarded by the German Federation of Industrial Cooperative Research Associations "Otto von Guericke" AiF. The new materials are already being tested and prepared for market introduction by the Austrian company Agrolinz Melamin GmbH.



"The microencapsulation of flame retardants is one of three strategies we are currently pursuing," explains Rafler. "The outer shell of the microscopic capsules is made of nonfusable, flame-resistant melamine resin like that used for frying pan handles or power plugs. The flame retardants remain enclosed in the capsules and are only released in the event of fire." Even substances incompatible with the base plastic material can be used if encapsulated. Nitrogen, carbon dioxide and compounds designed to produce extinguishing gases in reaction to heat are some examples. Gas-filled microcapsules are pressure-resistant and withstand plastics processing procedures such as extrusion, granulation and injection molding without rupturing.

The IAP research team has developed two further concepts to replace halogenated flame retardants. They manufacture fiber-reinforced polymers made of melt-spun melamine fibers. Such composite materials are easier to process and recycle than those reinforced with glass fiber. Finally, they manufacture high tenacity melamine foams that begin to slowly decompose at temperatures above 360 °C.

Dr. Johannes Ehrlenspiel | Fraunhofer-Gesellschaft

More articles from Materials Sciences:

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

nachricht Here's a tip: Indented cement shows unique properties
20.07.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>