Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT engineers probe spiders' polymer art

31.10.2006
Manufactured silk could be used for artificial tendons, parachutes, more

A team of MIT engineers has identified two key physical processes that lend spider silk its unrivaled strength and durability, bringing closer to reality the long-sought goal of spinning artificial spider silk.

Manufactured spider silk could be used for artificial tendons and ligaments, sutures, parachutes and bulletproof vests. But engineers have not managed to do what spiders do effortlessly.

In a study published in the November issue of the Journal of Experimental Biology, Gareth H. McKinley, professor of mechanical engineering, and colleagues examined how spiders spin their native silk fibers, with hopes of ultimately reproducing the process artificially.

McKinley heads the Non-Newtonian Fluid Dynamics research group in MIT's Department of Mechanical Engineering. Non-Newtonian fluids behave in strange and unexpected ways because their viscosity, or consistency, changes with both the rate and the total amount of strain applied to them.

Spider silk is a protein solution that undergoes pronounced changes as part of the spinning process. Egg whites, another non-Newtonian fluid, change from a watery gel to a rubbery solid when heated. Spider silk, it turns out, undergoes similar irreversible physical changes.

Stickiness and Flow

McKinley and Nikola Kojic, a graduate student in the Harvard-MIT Division of Health Sciences and Technology, studied the silk of Nephila clavipes, the golden silk orb-weaving spider. One species of golden orb spider creates a web so strong it can catch small birds. In the South Pacific, people make fishing nets out of this web silk.

The researchers chose the golden silk spider because of the formidable strength of its web. But Kojic was taken aback when the first palm-sized spider crawled out of the box he received in the mail from an accommodating employee of Miami's MetroZoo. (She simply gathered some up from the grounds; the zoo does not exhibit golden orb spiders.)

"This is pretty scary," he said. "I'd never seen a spider this big. I never grew up around anything with furry knuckles." But he quickly settled into dissecting the peanut-sized and -shaped protuberance on the spiders' backs containing their silk-producing glands and spinnerets.

Spiders don't actually spin ("spinning" refers to the age-old art of drawing out and twisting fibers to form thread); instead, they squirt out a thick gel of silk solution. (One teaspoonful can make 10,000 webs.) They then use their hind legs as well as their body weight and gravity to elongate the gel into a fine thread.

Kojic, who first practiced on silkworms, learned how to extract a microscopic amount of the gel-like solution from the spider's silk-producing major ampullate gland.

The researchers used devices called micro-rheometers-custom-made to handle the tiny drops of silk solution-to test the material's behavior when subjected to forces. The team tested the thick solution's viscosity, or how it flowed, by "shearing" it, or placing it between two rapidly moving glass plates. They tested its stickiness by pulling it apart, like taffy, between two metal plates.

The magic that makes silk so strong, the researchers discovered, happens while it flows out of the spider's gland, lengthens into a filament and dries.

Engineering Nature

The key to spider silk is polymers.

Plastics, Kevlar (used in bulletproof vests) and parts of the International Space Station are some of the many items made from polymers. The proteins in our bodies are polymers made from amino acids. From the Greek for "many" and "units," polymers are long linked chains of small molecules. They can be flexible or stiff, water-soluble or insoluble, resistant to heat and chemicals and very strong.

Silk protein solution consists of 30-40 percent polymers; the rest is water. The spider's silk-producing glands are capable of synthesizing large fibrous proteins and processing those proteins into an insoluble fiber.

"The amazing thing nature has found is how to spin a material out of an aqueous solution and produce a fiber that doesn't re-dissolve," McKinley said. Like a cooked egg white, dry spider silk doesn't revert to its former liquid state. What started out as a water-based solution becomes impervious to water.

The silk protein's long molecules are like tangled spaghetti. They form a viscous solution but are slippery enough to slide past each other easily and squeeze through the spider's ampullate gland. As the silk gel flows from the gland through an S-shaped, tapered canal to the outside of the spider's body, the long protein molecules become aligned and the viscosity (or resistance to flow) drops by a factor of 500 or more.

As the resulting liquid exits the abdomen through the spinneret, it has the characteristics of a liquid crystal. It's the exquisite alignment of the protein fibers, Kojic said, that gives silk threads their amazing strength.

While the silk stretches and dries, it forms miniscule crystalline structures that act as reinforcing agents. Engineered nanoparticles-tiny materials suspended in artificial silk-may be able to serve the same purpose.

In conjunction with the polymer synthesis and analysis work of Paula T. Hammond, an MIT professor of chemical engineering, McKinley's laboratory will use the new insights about spider silk to team up with MIT's Institute for Soldier Nanotechnologies to emulate the properties of silk through polymer processing.

"We're interested in artificial materials that emulate silk," McKinley said. Tailoring the properties of the liquid artificial spinning material to match the properties of the real thing "may prove essential in enabling us to successfully process novel synthetic materials with mechanical properties comparable to, or better than, those of natural spider silk," the authors wrote.

This work was supported by the NASA Biologically Inspired Technology Program, the DuPont-MIT Alliance and the MIT Institute for Soldier Nanotechnologies.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>