Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UWM research helps industry make stronger, lighter and cheaper alloys

High performance metals could revive foundries

Car engines that consume less energy and can keep running on low oil, lead-free plumbing fixtures, and tanks that are light enough to be airlifted, but are just as rugged as the much heavier varieties.

They sound futuristic, but these products are already realities thanks to materials that stretch the limits of performance. Called cast metal matrix composites (MMCs), they are cheaper, lighter and stronger than their original alloys. In fact, an aluminum-based MMC developed at the University of Wisconsin-Milwaukee (UWM) can replace iron-based alloys.

"These composites have many applications in the transportation, small engines, aerospace and computer industries," says Pradeep Rohatgi, a Wisconsin Distinguished Professor of Engineering who pioneered cost-effective methods of manufacturing these composites.

Now more than a 100-million-a-year industry themselves, MMCs have been used in components for train brakes, thermal management devices in computers, and even the space shuttle and the Hubble Space Telescope.

MMCs are engineered by combining metal with a totally different class of material, such as ceramics and recycled waste. Incorporating the two materials – the matrix and the reinforcement materials – result in amazing structural and physical properties not available in the natural world.

But MMCs would not have risen so far so fast without the research of Rohatgi, who currently is developing innovations such as composites embedded with nanoparticles that can deliver qualities such as self-lubrication, abrasion-resistance and energy-absorbing capabilities. He is also creating a robust "metallic syntactic foam."

"One thing that has surprised me over the years is how easy it was to make these materials," he says.

It was Rohatgi's adaptation of a conventional foundry process to synthesize aluminum and graphite that slashed the cost of mass-producing MMCs and allowed for more complex shapes to be made.

Since then, his laboratory has done extensive work in reinforcing aluminum with elements such as graphite and silicon carbide particles (ceramics) to form materials that are 20 to 40 percent stronger. The aluminum embedded with graphite also self-lubricates, making it particularly valuable for use in engines.

Standard aluminum pistons and cylinders can stick together during a cold-engine startup or when an engine needs oil, he says. But if the parts are made from an aluminum-graphite composite, the engine is partially protected from seizing.

This year, his lab received a half million dollars in federal money to develop lighter, heavy-duty materials to meet the U.S. Army's need for vehicles that can be airlifted and operate for prolonged periods without refueling.

For all the work he has done with major car companies and Wisconsin partners like Oshkosh Truck Corp., Rohatgi says the largest users of MMCs have not been in transportation, but in the computer industry.

Computer applications require smaller volumes and they often have the money to invest in new technologies, he says. "You look for the big bang in one area and it happens in another."

The newest class of MMCs that his lab is developing fortifies aluminum with nanoparticles to produce materials that can withstand enormous amounts of stress, are exceptionally hard, but are also lightweight. Nanoparticles are smaller than 100 nanometers (about the size of a baseball shrunk to one-millionth of its original size) that sometimes behave differently than larger particles.

A nanostructured aluminum can be 10 times stronger than conventional aluminum alloys.

A third kind of MMC Rohatgi is working on turns metals into foam.

Unlike Styrofoam, in which air is pumped into a plastic matrix, syntactic (metallic) foam is filled with hollow micro-balloons set into a metal base. The tiny balloons are made from recycled "fly-ash"-- waste materials generated by coal-burning power plants – and they house either various gases or are a vacuum inside.

"The cells are smaller and more regular than air bubbles, which make them better at energy absorption, in the case of a car crash, and also useful at sound dampening," he says. "They are also very light and there may be an interest in aluminum foam in homeland security issues. It can make buildings, including bomb shelters, more blast-proof and fire-resistant."

Now in his 20th year at UWM, Rohatgi continues to help foundries, such Eck Industries in Manitowoc, diversify their business with MMC casting, giving them a defense against competition from other countries where labor is cheaper.

His lab is researching techniques that will enable industries to manufacture composite components with increased speed – and the new technology will taking the process out of the factory, making on-site manufacture of parts possible.

The U.S. military also is interested in developing the capability of quickly producing replacement parts for vehicles while on the battlefield. Rapid manufacturing technologies can be expanded to include lightweight materials for bone replacement implants and tissue scaffolds, says Rohatgi, improving the treatment of wounded soldiers in mobile environments.

"The only way to keep foundries viable is to help them develop fast-track technologies to manufacture components from advanced lightweight materials," Rohatgi says. "It gives old-line manufacturing the means to producing high-tech products."

Pradeep Rohatgi | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

nachricht Boron can form a purely honeycomb, graphene-like 2-D structure
15.03.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>