Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop bistable nanoswitch

17.10.2006
Carbon nanotubes (CNT) have been under intense study by scientists all over the world for more than a decade and are being thought of as ideal building blocks for nanoelectromechanical systems (NEMS).

A type of one-dimensional structure with high-aspect ratio, carbon nanotubes have emerged as a promising material because of their many impressive mechanical, electrical and chemical properties.

Now scientists from Northwestern University have demonstrated a novel carbon nanotube-based nanoelectromechanical switch exhibiting bistability based on current tunneling. The device could help advance technological developments in memory chips and electronic sensing devices.

The research is published online by the scientific journal Small.

"We believe the unique characteristics of this nano device will likely lead to many high-impact applications in the field of nanoelectronics and nanosensors," said Horacio Espinosa, professor of mechanical engineering in the McCormick School of Engineering and Applied Science. Espinosa and Changhong Ke, a former graduate student of Espinosa's, co-authored the paper.

Since the invention of the integrated circuit (IC), the semiconductor industry has boomed following the famous Moore's law. However, as the characteristic dimension achievable by various photolithography techniques approaches its physical limits, scientists are searching for new materials and new device concepts to be able to continue the large-scale integration trend.

"Although several carbon nanotube-based NEMS devices have been proposed, frankly, none of them has reached the level of commercial success," said Espinosa. "There are many challenges associated with nanofabrication and reliability."

Nanoscale manufacturing is complex and too expensive, imposing significant challenges to the design of nano devices. Assessing device reliability based on nanoscale experimentation is one big challenge. For example, placement of nano-objects at desired locations is difficult and lacks reproducibility. Likewise, real-time observation and characterization of mechanical motion requires the use of in-situ electron microscopy and electronic measurement techniques capable of controlling noise and parasitic effects.

Espinosa and his team solved some of these issues by designing and demonstrating a tunneling bistable switch. The device is made of a free suspended multiwalled carbon nanotube interacting electrostatically with an underlying electrode. In the device circuit, there is a resistor in series with the nanotube, which plays an important role in the functioning of the device by adjusting the voltage drop between the nanotube and the underlying electrode.

"The design of the device looks very simple, but the theories behind it are very complex and span several disciplines, including quantum mechanics, electronics and mechanics," said co-inventor Ke, now a post-doctoral fellow at Duke University. "Also, a major advantage of our device is its geometry, which is fully compatible with current manufacturing techniques for mass production."

Espinosa and Ke demonstrated the behaviors of the device by mounting individual carbon nanotubes to the tip of a tungsten probe using a nanomanipualtor inside a scanning electron microscope. Then the nanotube was actuated by applying a potential to an adjustable micron-size gap between the nanotube and an electrode. The motion of the nanotube was recorded by the electron microscope, and the current in the circuit was recorded by a source-measurement unit.

Northwestern has filed a patent application covering the concept of the bistable tunneling device and its application and is seeking commercial partners to develop the technology. The potential applications of the device include NEMS switches, random-access memory elements and logic devices.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>