Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers mimic lotus leaves for self-cleaning PV arrays, non-stick MEMS

16.10.2006
Researchers at the Georgia Institute of Technology are mimicking one of Nature's best non-stick surfaces to help create more reliable electric transmission systems, photovoltaic arrays that retain their efficiency, MEMS structures unaffected by water and improved biocompatible surfaces able to prevent cells from adhering to implanted medical devices.

Based on a collaboration of materials scientists and chemical engineers, the research aims to duplicate the self-cleaning surfaces of the lotus plant, which grows in waterways of Asia. Despite growing in muddy conditions, the leaves and flowers remain clean because their surfaces are composed of micron- and nano-scale structures that – along with a waxy coating – prevent dirt and water from adhering. Despite their unusual surface properties, the rough surfaces allow photosynthesis to continue in the leaves.

"When rain hits the leaves of the lotus plant, it simply beads up," noted C.P. Wong, a Regents Professor in Georgia Tech's School of Materials Science and Engineering. "When the leaves are also tilted at a small angle, the beads of water run off instantaneously. While the water is rolling off, it carries away any dirt on the surface."

The self-cleaning action of the lotus plant has intrigued researchers for decades, and recent studies done by researchers in several different groups have demonstrated the reasons behind the plant's unique abilities.

The plant's ability to repel water and dirt results from an unusual combination of a superhydrophobic (water-repelling) surface and a combination of micron-scale hills and valleys and nanometer-scale waxy bumps that create rough surfaces that don't give water or dirt a chance to adhere.

"Because of the combination of nano-scale and micron-scale structures, water droplets can only contact about three percent of the surface," Wong said. "They're just not touching very much of the lotus surface as compared to a smooth surface."

To address several unique applications, Georgia Tech researchers have attempted to duplicate the two-tier lotus surface using a variety of materials, including polybutadiene. But that organic compound isn't suitable for coatings that are exposed to sunlight because ultraviolet radiation breaks down its carbon bonds. So to address their first lotus application – self-cleaning insulators used on high-voltage power lines – the researchers had to develop another material.

Supported by the National Electric Energy Testing Research and Applications Center (NEETRAC), that project would solve a problem that plagues electric utilities. The build-up of dirt and dust on ceramic or silicone insulators used by high-voltage power lines can eventually create a short circuit that can damage the electric distribution network. It's impractical to manually clean the insulators.

Wong and collaborators Yonghao Xiu, Lingbo Zhu and Dennis Hess have developed a lotus surface able to withstand ultraviolet radiation using a combination of silicone, fluorocarbons, and inorganics such as titanium dioxide and silicon dioxide. Their prototype coating has shown excellent durability in long-term testing.

Supported by the National Science Foundation, NASA and other agencies, Georgia Tech is also pursuing other work based on lotus applications:

Use of carbon nanotube bundles to create the surface bumps needed to prevent dust from accumulating on the surfaces of photovoltaic (PV) cells, space suits and other equipment intended for use on the moon or Mars – where there's no rain. Arranging patterns of nanotube bundles a few microns apart and applying a weak electrical charge should help keep dust away and maintain maximum efficiency in the PV cells that power space missions.

Application of lotus coatings to prevent "stiction," which is the strong adhesive force that can form between the structures of micro-electromechanical systems (MEMS) and substrates. The magnitude of these forces can be enough to deform the structures, resulting in device failure. With its superhydrophobicity and surface roughness, a lotus surface coating can prevent stiction, Wong said.

A two-tier surface system composed of hexagonally-packed silica spheres on which gold nanoparticles were deposited. The resulting chemical and physical structures were studied to establish the impact of surface hydrophobicity and roughness on the measured contact angles on the rough surfaces.

Lotus surfaces for use in implantable medical devices to prevent cells from attaching to form blood clots. If successful, this application could replace anti-clotting materials that are coated onto implantable devices such as stents used to hold blood vessels open.

The lotus plant is yet another example of how researchers can learn surprising lessons from what Nature has provided, Wong noted.

"It's not easy to get dust and dirt off a smooth surface," he said. "Though it seems counterintuitive, the roughness actually helps the cleaning process. We believe this lotus surface will have many potential applications."

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>