Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fertilizer SRM can help control heavy metal content

16.10.2006
A new reference material developed by the National Institute of Standards and Technology (NIST) can help the agriculture industry and state regulators monitor the concentrations of several potentially hazardous heavy metal contaminants in fertilizers.

Modern multi-nutrient fertilizers produced for home and agricultural use are formulated from multiple sources to provide significant amount of nitrogen, phosphorus and potassium, the major plant nutrients, and lesser or even trace amounts of other nutrients needed by different crops, such as boron, calcium, iron and zinc.

Until relatively recently, fertilizers were tested and certified for their nutrient content, but little attention was paid to the possibility of heavy metal contaminants introduced by the mineral sources used to prepare the fertilizer. However, in response to incidents of heavy metal contamination of cropland, several states have enacted regulations in the past seven years that limit the amounts of some potentially hazardous non-nutritive elements in fertilizers. Several countries, including Japan, China, and Australia, and the European Union, also limit the amount of selected elements in fertilizers.

While fertilizer manufacturers and state regulatory authorities have needed to develop analytical methods to implement these regulations, until now there have been no certified reference materials available that they could use to validate the accuracy of their measurements. It can be difficult to measure accurately trace levels of some metals in a chemically complex mixture like fertilizer.

NIST's Standard Reference Material, SRM 695, "Trace Elements in Multi-Nutrient Fertilizer," was developed in collaboration with members of the Association of American Plant Food Control Officials (AAPFCO) and The Fertilizer Institute (TFI) to help meet this need. SRM 695 is a typical multi-nutrient fertilizer certified for the content of both major elements and trace elements, including calcium, iron, magnesium, manganese, sodium, potassium, zinc, arsenic cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and vanadium. Additional reference values are provided for aluminum, boron, nitrogen, phosphorous and selenium.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov
http://srmors.nist.gov/view_cert.cfm?srm=695

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>