Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon scientists use 'green' approach to transform plastics manufacturing

10.10.2006
Landmark results will reduce costs for industry, expand products

Using environmentally safe compounds like sugars and vitamin C, scientists at Carnegie Mellon University have vastly improved a popular technology used to generate a diverse range of industrial plastics for applications ranging from targeted drug delivery systems to resilient paint coatings.

The revolutionary improvement in atom transfer radical polymerization (ATRP) now enables large-scale production of many specialty plastics, according to the scientists, whose work appears in a special issue of the Proceedings of the National Academy of Sciences (PNAS) devoted to materials science. This edition will be published Oct. 17.

The new "green" version of ATRP will allow existing materials to be made more efficiently, reducing industrial purification costs before and after running a reaction and permitting the production of new, unprecedented materials.

"By reducing the level of the copper catalyst used in ATRP, we have made this process at least 100 times more efficient and much more amenable to industrial processes," said Krzysztof Matyjaszewski, J.C. Warner Professor of Natural Sciences and director of the Center for Macromolecular Engineering in the Mellon College of Science at Carnegie Mellon.

Developed by Matyjaszewski, ATRP is a broadly adopted process that allows the production of specialty polymers for coatings, adhesives, lubricants, cosmetics, electronics and numerous other markets. ATRP's strength lies in its ability to combine chemically diverse subunits (monomers) into multiple arrangements that create specialized polymers. This technology enables production of "smart" materials that can respond intelligently to altered environments, such as changes in pressure, acidity, light exposure and other variables.

ATRP is being licensed to several companies that have already begun commercial production in the United States, Europe and Japan. But Matyjaszewski says large-scale production of polymers by ATRP has been limited because ATRP previously required a high concentration of copper catalyst that had to be removed from finished products.

"Our new ATRP processes significantly reduce the cost of recycling the catalyst and also decrease the release of hazardous reaction byproducts found in industrial waste," Matyjaszewski added.

During ATRP, scientists produce a complex polymer structure using a special catalyst to add one or a few monomer units at a time to a growing polymer chain. ATRP requires a balance between two species of copper (Cu) catalyst, CuI and CuII. But as an ATRP reaction progresses, CuII builds up. Typically, researchers add more CuI to compensate for this effect and maintain the balance between the two copper species. But this approach ultimately generates materials with high overall levels of copper -- levels that are too costly to remove efficiently on a large-scale industrial basis.

The PNAS report highlights the team's novel use of "excess reducing agents" to lower the amount of copper catalyst from 5,000 parts per million (ppm) to 10 ppm. The team showed that you can steadily add environmentally benign "reducing" agents -- vitamin C, sugars or standard free radicals -- to chemically reduce CuII to CuI. This unprecedented approach continuously reduces CuII to CuI at the same rate CuII forms while retaining the desired balance between the two states. Ultimately, this technique dramatically lowers the overall amount of Cu catalyst used in ATRP by as much as 1,000 times.

The team's new technology virtually eliminates the need to remove miniscule amounts of catalyst remaining in a product. For example, many ATRP-generated plastics for medical implants would be acceptable from a health perspective because they contain so little copper. However, if the target application -- such as a coating for a biomedical stent -- absolutely requires the removal of residual catalyst, companies will now have much less of it to take out, significantly lowering removal costs, according to the authors.

The new ATRP technique also allows for production of higher molecular weight chains, thereby extending the range of accessible materials that could be made using this method. For example, chemists could grow high molecular weight polymers with precise control, providing even larger templates for nanoscale carbon structures used in computer screen field emission displays and semi-conductors that regulate the flow of electricity in sensors, some only a fraction of the width of a hair.

ATRP differs significantly from conventional polymer manufacturing methods. This "living," synthetic process can be shut down or restarted at will, depending on how the temperature and other conditions of the reaction are varied. ATRP is an exceptionally robust way to uniformly and precisely control the chemical composition and architecture of polymers as well as the growth of every polymer chain, all while employing a broad range of monomers.

Much of the research progress and commercial success related to ATRP is due to two research consortia Matyjaszewski has initiated and led. These successful consortia have allowed many companies to incorporate ATRP methodologies into the development of new products for their specific markets. Companies from around the world send their employees to train in Matyjaszewski's laboratory.

Lauren Ward | EurekAlert!
Further information:
http://www.chem.cmu.edu/groups/maty/center/

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>