Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New wood-plastic composites to boost industry, help use waste products

05.10.2006
Wood science researchers in the College of Forestry at Oregon State University have developed new wood-plastic composites that are stronger and less expensive than any similar products now available – a major breakthrough for this growing industry.

Wood-plastic composites, often used for such things as outdoor decking, are one of the fastest growing components of the wood composites industry. Some projections have suggested that these products, which were used for less than 1 percent of decking in the mid-1990s, may capture 20 percent of that market by 2010.

"Composite products made from wood and plastic are highly desirable for their low maintenance and ability to resist rot," said Kaichang Li, an associate professor in the OSU Department of Wood Science and Engineering. "But their use has been limited because of high cost and low strength, a result of inadequate adhesion between the wood fibers and plastic."

Fundamentally, Li said, this is because wood and plastic are like oil and water, and do not mix well. Wood is hydrophilic – it absorbs water – and plastic is hydrophobic, repelling it. A "compatibilizer," typically a polymer that bridges the interface between the wood and plastic in these products, improves stress transfer and increases their strength and stiffness.

The new wood-plastic composites use superior compatibilizers developed in Li's laboratory, and an innovative technology for mixing wood and thermoplastics such as nylons, in which the melting temperature of the plastic is higher than the wood degradation temperature.

With this approach, the new wood-plastic composites can use very inexpensive plastics such as those found in old carpet fibers – about 4.4 billion pounds of which are now wasted every year, going into landfills where they are extremely slow to biodegrade and pose a significant waste disposal problem.

They could also open the door for improved utilization of low-grade woody biomass from needed thinning of Oregon forests, which is increasingly being done to improve forest health and prevent catastrophic wildfire. A better "value added" use for that wood fiber could be important, experts say.

The technology may prompt a major expansion of the wood-plastic composite industry into new types of products and uses, experts say. In particular, such products may help further replace wood treated with chemical preservatives, some of which have already been banned due to health and environmental concerns.

"This new material is far superior to anything currently available in the wood-plastic composite market," Li said. "It should become an important new product and an industry with the potential for rapid growth."

So far, the research on the new product has only been done at a laboratory scale. Findings have been published in the Journal of Applied Polymer Science and other professional publications.

Scientists now want to duplicate the findings at something much closer to an industrial scale, which they will be able to do with the contribution to OSU of a $180,000 extruder from ENTEK, a Lebanon, Ore., firm that manufactures extruders for bio-based composites.

A local startup company in Corvallis, Sustainable Industries Group, LLC, is also supporting the research. And the Oregon Nanoscience and Microtechnologies Institute has provided support to get the new equipment installed, which also has the capability to produce nanocomposite materials.

The new wood-plastic composites are just the latest advance with new adhesives and materials from Li's research programs. In the past few years, his research also began a revolution in wood adhesives. Inspired by the way mussels on the ocean shore cling to rocks despite pounding waves, Li found their secret – an unusual adhesive that could be mimicked by modifications of abundant and inexpensive soy protein. The modified soy protein can be used as an adhesive for production of plywood, particleboard and other wood composite panels, without giving off the carcinogenic formaldehyde fumes common with traditional wood adhesives.

That patented adhesive has already been commercially used for production of wood composite panels by Columbia Forest Products, the largest producer of decorative interior panels in the nation. All plywood plants of Columbia Forest Products have been converted to using the new technology in face of rapidly rising demand.

And one of the latest innovations, still in early research phases, is cellulose crystals from wood for use in rubber products. Products such as tires now often use silica in their manufacturing processes, which can create waste disposal concerns. The use of wood – a renewable material – might address that problem and some day have the nation driving on tires made at least partially out of trees.

Kaichang Li | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>