Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New wood-plastic composites to boost industry, help use waste products

05.10.2006
Wood science researchers in the College of Forestry at Oregon State University have developed new wood-plastic composites that are stronger and less expensive than any similar products now available – a major breakthrough for this growing industry.

Wood-plastic composites, often used for such things as outdoor decking, are one of the fastest growing components of the wood composites industry. Some projections have suggested that these products, which were used for less than 1 percent of decking in the mid-1990s, may capture 20 percent of that market by 2010.

"Composite products made from wood and plastic are highly desirable for their low maintenance and ability to resist rot," said Kaichang Li, an associate professor in the OSU Department of Wood Science and Engineering. "But their use has been limited because of high cost and low strength, a result of inadequate adhesion between the wood fibers and plastic."

Fundamentally, Li said, this is because wood and plastic are like oil and water, and do not mix well. Wood is hydrophilic – it absorbs water – and plastic is hydrophobic, repelling it. A "compatibilizer," typically a polymer that bridges the interface between the wood and plastic in these products, improves stress transfer and increases their strength and stiffness.

The new wood-plastic composites use superior compatibilizers developed in Li's laboratory, and an innovative technology for mixing wood and thermoplastics such as nylons, in which the melting temperature of the plastic is higher than the wood degradation temperature.

With this approach, the new wood-plastic composites can use very inexpensive plastics such as those found in old carpet fibers – about 4.4 billion pounds of which are now wasted every year, going into landfills where they are extremely slow to biodegrade and pose a significant waste disposal problem.

They could also open the door for improved utilization of low-grade woody biomass from needed thinning of Oregon forests, which is increasingly being done to improve forest health and prevent catastrophic wildfire. A better "value added" use for that wood fiber could be important, experts say.

The technology may prompt a major expansion of the wood-plastic composite industry into new types of products and uses, experts say. In particular, such products may help further replace wood treated with chemical preservatives, some of which have already been banned due to health and environmental concerns.

"This new material is far superior to anything currently available in the wood-plastic composite market," Li said. "It should become an important new product and an industry with the potential for rapid growth."

So far, the research on the new product has only been done at a laboratory scale. Findings have been published in the Journal of Applied Polymer Science and other professional publications.

Scientists now want to duplicate the findings at something much closer to an industrial scale, which they will be able to do with the contribution to OSU of a $180,000 extruder from ENTEK, a Lebanon, Ore., firm that manufactures extruders for bio-based composites.

A local startup company in Corvallis, Sustainable Industries Group, LLC, is also supporting the research. And the Oregon Nanoscience and Microtechnologies Institute has provided support to get the new equipment installed, which also has the capability to produce nanocomposite materials.

The new wood-plastic composites are just the latest advance with new adhesives and materials from Li's research programs. In the past few years, his research also began a revolution in wood adhesives. Inspired by the way mussels on the ocean shore cling to rocks despite pounding waves, Li found their secret – an unusual adhesive that could be mimicked by modifications of abundant and inexpensive soy protein. The modified soy protein can be used as an adhesive for production of plywood, particleboard and other wood composite panels, without giving off the carcinogenic formaldehyde fumes common with traditional wood adhesives.

That patented adhesive has already been commercially used for production of wood composite panels by Columbia Forest Products, the largest producer of decorative interior panels in the nation. All plywood plants of Columbia Forest Products have been converted to using the new technology in face of rapidly rising demand.

And one of the latest innovations, still in early research phases, is cellulose crystals from wood for use in rubber products. Products such as tires now often use silica in their manufacturing processes, which can create waste disposal concerns. The use of wood – a renewable material – might address that problem and some day have the nation driving on tires made at least partially out of trees.

Kaichang Li | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>