Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving textile hygiene

04.10.2006
One of the problems protective clothing and sportswear manufacturers are faced with is finding a polypropylene-based fabric which remains comfortable and hygienic to its users.

EUREKA project E! 2709 BASTEX has developed new antibacterial additives which can be incorporated into polypropylene material to produce high-performance clothing. The outcome of this project has been so successful that results have been adapted to bed linen in hospitals and other healthcare establishments – creating an important growth in the market.

Protective clothing and sportswear needs to be tough and resilient to physical strain, so a fabric based on polypropylene is ideal. But unlike wool or cotton, polypropylene is not absorbent of sweat, so fabric made from it quickly becomes unpleasant to use. The participant in the BASTEX project worked on resolving this problem by selecting the optimum features for antibacterial additives and developing antibacterial-incorporated polypropylene fibres and textile materials based on these fibres.

Eliminating unpleasant odours

V-C is the Slovak Republic’s professional research institute for textile chemistry, textile and clothing manufacture. Its own role in the project was to develop selected types of antimicrobial additive, or biostat. Project coordinator Dr Jozef Šesták of V-C describes how it developed a new biostat with an inorganic base. “All additives previously used for this purpose had an organic chemical carrier, which has an unpleasant smell for the user and can give rise to environmental problems when the time comes for disposal. Our new antibacterial additives are a major improvement on existing antibacterials because they use inorganic carriers. The new biostat is much more acceptable to those who will wear the final protective clothing and avoids the environmental problems.”

Among the two Czech SMEs involved, Trevos Kostalov is specialised in polypropylene fibres for a wide range of uses; while Spolsin contributed with its experience in knitted fabrics for sportswear and textiles for work protective clothing. Trevos Kostalov developed new types of polypropylene fibres and refined the production process needed for incorporating the antibacterials. In order to develop fabrics suitable for larger-scale manufacture, it measured and determined the performance of biostatic fibres. The optimum concentration of additive was defined so that it would be effective as an antibacterial and maintain its hygienic potential and wearer comfort, while not affecting the mechanical and physical properties of the polypropylene fibres and the durability of the fabric.

Thanks to the success of this project, the antimicrobial biostat market is set to expand substantially, currently producing about 1 ton per year amounting to 35,000 euro annually. However, they have the capacity to produce 12 tons. Dr Šesták comments: “We are ready to sell in larger quantities but customers need time to get used to the idea of these new products.” According to V-C market research, up to 10% of sports and protective clothing products could eventually be offered with antimicrobial treatment. It would not have been possible without EUREKA. “Working as a EUREKA project has given us the major benefit of cooperation within an international team of researchers and manufacturers. We made a lot of new contacts and gained much experience in seeing the results of our research being applied in practice,” reveals Šesták.

Sally Horspool | alfa
Further information:
http://www.eureka.be/bastex

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>