Latest fuel cell material advance overcomes low humidity conductivity problem

James McGrath, University Distinguished Professor of Chemistry with the Macromolecules and Interfaces Institute at Virginia Tech, will announce his research group's latest development, a PEM material that retains conductivity during low humidity, during his plenary lecture at the Challenges for the Hydrogen Economy symposium during the 232nd National Meeting of the American Chemical Society (ACS) on September 10-14 in San Francisco.

Fuel cells convert chemical energy, usually from hydrogen, to electrical energy. In a PEM fuel cell, the critical exchange takes place through a thin water-swollen copolymer film that contains sulfonic acid (SO3H) groups. Electrons are peeled off by oxidation of the hydrogen atoms and hydrated protons pass through the film to combine with oxygen on the other side to form water as a byproduct.

The efficiency of the exchange process depends upon water, so efficiency – measured as proton conductivity – goes down as humidity goes down. “Up to now, a lot of water has been needed to assist the proton transfer process,” said McGrath. “But, in the desert, that is pretty inefficient.” McGrath, chemical engineering Professor Don Baird, and their students demonstrated a method for creating a material with improved conductivity even at lower humidity. The U.S. Department of Energy awarded McGrath and Baird's groups $1.5 million over five years to advance the research.

Instead of stirring two kinds of reactive monomers, or small molecules, together to form a new random copolymer, the new material links blocks of two different short polymers in sequences. For example, he would link polymer W (loves water) and polymer d (dry but strong) into a chain this way: WWWWWdddddddWWWWWdddddddd.

The researchers can link a 10- to 50-unit block of a polymer containing acidic groups (SO3H) that like water (hydrophilic) to an equally long block of a polymer that has mechanical strength, thermal stability, and endurance, but hates water (hydrophobic). The chains self-assemble into flexible thin films. Under an atomic force microscope, the film's swirling surface looks like a fingerprint, with light ridges and dark channels. It turns out that the soft hydrophilic polymer forms the dark channels where water is easily absorbed so that the entire film – or proton exchange membrane (PEM) – has an affinity for water transport that is two to three times higher than the present commercially available PEM.

In addition to making PEM materials with better qualities, another goal of the research is to make PEM materials that can be easily manufactured. The self-assembling nature of the block copolymer material into a nanocomposite film is an important attribute. In addition, Baird is working on processing the film from powders using a reverse roll coater, equipment commonly available in the coatings industry but not yet being used to produce PEM material. McGrath will present the paper, “Progress in alternate proton exchange membrane materials for fuel cells (Fuel 3),” at 10:15 a.m. Sunday, Sept. 10, in the Golden Ballroom of the Sheraton Palace.

Media Contact

Susan Trulove EurekAlert!

More Information:

http://www.vt.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors