Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Polymer-Coating Process Under Development at Rutgers-Camden

31.08.2006
As gas prices continue to soar, the Navy will be eager to learn of research underway at Rutgers University—Camden.

“Barnacles that attach to naval ships are a huge cost to the Navy. Imagine if you drove a car with a parachute attached; this extra drag force requires more gas,” says Daniel Bubb, an assistant professor of physics at Rutgers-Camden, who has developed a new method for coating polymers.

Used in a variety of industries, including protecting battleships from freeloading barnacles, polymers are materials made from long chains of molecules.

Thanks to a $129,463 National Science Foundation (NSF) grant in its third year, Bubb and his team (including a post-doctoral fellow, undergraduate, and graduate students) are refining this new coating process. By employing a pulsed laser deposition technique, a high-power laser is focused onto a target material in a vacuum chamber, creating a plume of vaporized material. The object that is to be coated is placed in the path of the vapor. The Rutgers-Camden research team then tunes the laser to a specific vibrational mode of the polymer to ease the vaporization process and limit photochemical and photothermal damage.

This research will benefit many industries that rely solely on the most commonly used method of spin-coating, a viable technique for certain applications but inefficient for coating devices that are too large or small for its apparatus.

“With spin-coating, it’s difficult to layer and adhesion can be a problem” says Bubb, whose research also could improve biocompatibility in devices that require coating only on very specific and sensitive areas.

The Rutgers-Camden researcher also has advanced coating polymers that are too thermally sensitive by treating materials with a solvent before using the laser. This aspect of the research is funded through a $35,000 Cottrell College Science Award.

This past summer undergraduate Elijah Brookes of Haddonfield and post-baccalaureate student Brian Collins of Voorhees joined Bubb on visits to Vanderbilt University, where the Rutgers-Camden research team tested their findings at the W.M. Keck Vanderbilt Free-electron Laser Center.

Bubb’s team establishes preliminary findings on the four lasers housed at Bubb’s lab at Rutgers-Camden – three are solid state laser systems, the fourth laser allows the group to tune to specific vibrational bands in the material they study. While the free-electron laser at Vanderbilt provides exceptional power and wavelength range for the Rutgers-Camden student research team to more definitively pin down their data.

“Working with Dr. Bubb has allowed me to get involved in the physics department and see how it is to really work in a lab setting. My experience will surely benefit me as I graduate,” says Brookes, a junior physics major at Rutgers-Camden.

“We don’t limit our conversations to strictly laser optics. So, if I have a question on any branch of physics or any branch of science even, Dr. Bubb is there to answer. That’s been amazing to me,” says Collins, who is currently applying to medical school.

Bubb began his NSF grant at Seton Hall University, where he served as an assistant professor of physics prior to joining Rutgers-Camden in September, 2005. The tunable laser, which was purchased through a previous NSF grant, now is housed at Rutgers-Camden.

A graduate of Ursinus College, where he earned his bachelor degree, Bubb received his master’s in physics from the Florida Institute of Technology and his doctoral degree in applied physics from the New Jersey Institute of Technology. Bubb held an American Society of Engineering Education Postdoctoral Fellowship at the Naval Research Laboratory in Washington, D.C.

He resides in Woodbridge.

Mike Sepanic | EurekAlert!
Further information:
http://www.camden.rutgers.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>