Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Polymer-Coating Process Under Development at Rutgers-Camden

31.08.2006
As gas prices continue to soar, the Navy will be eager to learn of research underway at Rutgers University—Camden.

“Barnacles that attach to naval ships are a huge cost to the Navy. Imagine if you drove a car with a parachute attached; this extra drag force requires more gas,” says Daniel Bubb, an assistant professor of physics at Rutgers-Camden, who has developed a new method for coating polymers.

Used in a variety of industries, including protecting battleships from freeloading barnacles, polymers are materials made from long chains of molecules.

Thanks to a $129,463 National Science Foundation (NSF) grant in its third year, Bubb and his team (including a post-doctoral fellow, undergraduate, and graduate students) are refining this new coating process. By employing a pulsed laser deposition technique, a high-power laser is focused onto a target material in a vacuum chamber, creating a plume of vaporized material. The object that is to be coated is placed in the path of the vapor. The Rutgers-Camden research team then tunes the laser to a specific vibrational mode of the polymer to ease the vaporization process and limit photochemical and photothermal damage.

This research will benefit many industries that rely solely on the most commonly used method of spin-coating, a viable technique for certain applications but inefficient for coating devices that are too large or small for its apparatus.

“With spin-coating, it’s difficult to layer and adhesion can be a problem” says Bubb, whose research also could improve biocompatibility in devices that require coating only on very specific and sensitive areas.

The Rutgers-Camden researcher also has advanced coating polymers that are too thermally sensitive by treating materials with a solvent before using the laser. This aspect of the research is funded through a $35,000 Cottrell College Science Award.

This past summer undergraduate Elijah Brookes of Haddonfield and post-baccalaureate student Brian Collins of Voorhees joined Bubb on visits to Vanderbilt University, where the Rutgers-Camden research team tested their findings at the W.M. Keck Vanderbilt Free-electron Laser Center.

Bubb’s team establishes preliminary findings on the four lasers housed at Bubb’s lab at Rutgers-Camden – three are solid state laser systems, the fourth laser allows the group to tune to specific vibrational bands in the material they study. While the free-electron laser at Vanderbilt provides exceptional power and wavelength range for the Rutgers-Camden student research team to more definitively pin down their data.

“Working with Dr. Bubb has allowed me to get involved in the physics department and see how it is to really work in a lab setting. My experience will surely benefit me as I graduate,” says Brookes, a junior physics major at Rutgers-Camden.

“We don’t limit our conversations to strictly laser optics. So, if I have a question on any branch of physics or any branch of science even, Dr. Bubb is there to answer. That’s been amazing to me,” says Collins, who is currently applying to medical school.

Bubb began his NSF grant at Seton Hall University, where he served as an assistant professor of physics prior to joining Rutgers-Camden in September, 2005. The tunable laser, which was purchased through a previous NSF grant, now is housed at Rutgers-Camden.

A graduate of Ursinus College, where he earned his bachelor degree, Bubb received his master’s in physics from the Florida Institute of Technology and his doctoral degree in applied physics from the New Jersey Institute of Technology. Bubb held an American Society of Engineering Education Postdoctoral Fellowship at the Naval Research Laboratory in Washington, D.C.

He resides in Woodbridge.

Mike Sepanic | EurekAlert!
Further information:
http://www.camden.rutgers.edu

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>