Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell researchers test carbon fiber to make tiny, cheap video displays

24.08.2006
Engineers who develop microelectromechanical systems (MEMS) like to make their tiny machines out of silicon because it is cheap, plentiful and can be worked on with the tools already developed for making microelectronic circuits. There is just one problem: Silicon breaks too easily.

For decades, researchers have been trying to make video displays using tiny mirrors mounted on silicon oscillators. But silicon won't oscillate fast enough and bend far enough.

"You need something incredibly stiff to oscillate at a resonant frequency of 60,000 times a second (the line-scanning rate of most video displays), but it also needs to bend a lot for adequate image size," explained Shahyaan Desai, a Cornell graduate student who has been working for more than three years to create a practical MEMS video display device.

So Desai and his Cornell colleagues have turned to carbon fiber, the same material used to reinforce auto and aircraft body parts, bicycle frames and fishing rods.

"Carbon fiber is twice as stiff as silicon but 10 times more flexible," said Desai.

He is first author of a paper with Michael Thompson, Cornell associate professor of materials science and engineering, and Anil Netravali, Cornell professor of fiber science, on using carbon fibers in MEMS, published in the July issue of the Journal of Micromechanics and Microengineering.

Carbon fibers are made of thin, narrow sheets of graphite that roll up and clump together to form fibers. For industrial uses the fibers are embedded in plastic to form composite materials that are stronger than steel, yet lighter. Desai's MEMS are made with the raw fibers.

Desai first showed that micrometer-scale carbon fibers can bend like tiny fishing rods by more than 90 degrees and can be made to vibrate billions of times without breaking down. "This is, to our knowledge, the first material to even approach such large deformation at high frequencies without observable fatigue," the researchers wrote in their paper.

"Carbon is normally a brittle material," Desai said, "but in the fiber form it resists breakage. We have some data implying that if it lasts three and a half days it's going to last forever."

Desai then built an optical scanner consisting of a tiny rectangular mirror measuring 400 by 500 microns, supported by two carbon-fiber hinges about 55 microns across. Made to oscillate at 2.5 kHz, the tiny mirror caused a laser beam to scan across a range of up to 180 degrees, corresponding to a 90-degree bend by the carbon fibers.

An oscillating mirror could be used to scan a laser beam across a screen, and an array of mirrors, one for each horizontal line, could produce an image in the same way that a moving electron beam creates an image on a television screen.

"It would be an incredibly cheap display," Desai said. And the entire device would be small enough to build into a cell phone to project an image on a wall.

Besides serving as oscillators, the researchers said, carbon fibers could be made into clock springs that either unwind slowly to power a micromachine over a period of time or unwind rapidly to provide a sudden burst of power, or used as micro-sized pendulums that could harvest energy from motion like a mechanical self-winding watch to make cell phones, PDAs and even watches that are powered by the user's movement.

| EurekAlert!
Further information:
http://www.cornell.edu

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>