Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new window into the deformation of nanoscale materials

15.08.2006
Materials on the nanoscale don't always have the same properties they would in bulk; for one thing, nanomaterials are often a lot harder. Unlike most bulk materials, a crystal that is small enough can be perfect, free of defects, capable of achieving strength near its ideal theoretical limit.

Scientists have long assumed that a crystal needs to be perfect to sustain stress at its theoretical limit. Beyond this point dislocations in the crystal lattice occur, and the crystal undergoes a nonreversible change of shape, or plastic deformation.

Now a team from the Department of Energy's Lawrence Berkeley National Laboratory, Purdue University, and Hysitron Incorporated in Minneapolis has found that things don't necessarily happen this way. Using special instrumentation with the JEOL 3010 In Situ Transmission Electron Microscope at the National Center for Electron Microscopy (NCEM), the researchers were able to correlate high-resolution load-displacement measurements with individual video frames, showing how nanoscale volumes of aluminum deform under stress from a diamond "nanoindenter."

"Although it's been assumed that you need a perfect volume of material to reach the ideal strength, our results show this is not always true," says Andrew Minor of Berkeley Lab's Materials Sciences Division, who led the research team. "The situation is more complex. We found that plenty of defects accumulate before the point that would usually be interpreted as the initial yield point."

And that's not all, Minor adds. "Surprisingly, even when the material had a high defect density it could withstand near-theoretical shear stresses."

Team member Zhiwei Shan says, "Ideas about the onset of plasticity during nanoindentation have typically been based on indirect evidence. Computational studies can calculate the ideal strength of a material based on its electronic structure and the bond strengths between the atoms in a perfect crystal. While researchers have tried to correlate these calculated ideal strengths with nanoindentation experiments, until now they've had to infer the relationship after the fact, mainly from the strengths achieved."

The specially equipped in situ transmission electron microscope that revealed the true sequence of events, says Minor, "is an experimental set-up unique in the world" because it combines, for the first time, two distinct ways of looking at the onset of plasticity during nanoindentation, producing images of the deformation events and mechanical data at the same time.

Nanoindentation techniques pioneered at NCEM feature real-time movies, which can be studied frame by frame, taken inside the transmission electron microscope. Another way of studying plasticity is outside the microscope, with sensors that precisely measure the forces imposed by the indenter as the system evolves. "Until now, attempts to correlate deformation events with force measurements have been ex post facto and thus inherently limited," says Minor.

The research team built a quantitative in situ nanoindenter by integrating a capacitive force sensor from Hysitron into a sample holder designed by NCEM, taking advantage of the in situ microscope's large sample-stage area. For the first time data and movies documenting nanoscale deformation events could be made simultaneously and directly.

"Most people have the force-versus-displacement graph but not the movie," says Shan. "On the graph, one big spike marks the 'pop-in' event -- usually thought of as the onset of plasticity. In movies, the first appearance of defects and displacements was thought to be the pop-in event."

"As it turns out, these two events don't necessarily coincide," says Minor. "In fact there are often faint signals of deformation before the actual pop-in event in many nanoindentation data sets, but these subtleties have often been regarded as noise, or just assumed to be unimportant."

A typical nanoindentation experiment with the new set-up involves a three-sided diamond indenter approaching the apex of a target grain of aluminum, a single crystal within a thin film of aluminum deposited on a silicon substrate. As the indenter loads the crystal -- pressing against it -- the load and displacement of the indenter are plotted on a graph. Simultaneously the video shows corresponding changes in the crystal.

In the evolving graph of one such event, two small transients are observed that correspond to video frames showing the sudden appearance of dislocations in the crystal. In the first event, the apparently flawless crystal instantly becomes overcome with defects. In the second event, the defects abruptly shift. These changes show dislocations (line defects in the crystal) breaking free, gliding over other sections, interacting, and then coming to rest at their new equilibrium positions.

Remarkably, although consumed with dislocations, the crystal is enduring shear stresses nearly equal to the calculated ideal strength of the material. Pop-in is still to come.

When it does, the event is inescapable on both graph and video frame. The graph shows a sustained rise in force, then a sudden relaxation of load as the crystal gives way. The video frame shows a new pattern of defect contrast and a different geometry of the defect-riddled crystal grain.

Says Shan, "These results challenge the traditional concept of the initial deformation of crystalline materials. The discovery poses many new questions about other kinds of nanoscale materials, including thin films, nanowires, and individual nanoparticles. We're eagerly pursuing those questions now."

Minor says, "For the first time we can directly investigate fundamental parameters like elastic moduli and the stresses required to initiate dislocations and their movement, a prospect that has the materials science community very excited. It's opened up a new window into the world of nanomechanics."

Paul Preuss | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>