Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New X-ray microbeam answers 20-year-old metals question

07.08.2006
What happens to metals when you bend them? The question isn't as easy as you may think.

A research team from the National Institute of Standards and Technology (NIST), Oak Ridge National Laboratory (ORNL), and the University of Southern California, using a unique X-ray probe, has gathered the first direct evidence showing that, on average, a 20-year-old model is a useful predictor of stresses and strains in deformed metal.*

But the measurements also show that averages can be deceiving. They mask extremely large variations in stresses that, until now, had gone on undetected. The experiments have implications for important practical problems in sheet metal forming and control of metal fatigue, which is responsible for many structural materials failures.

When metals deform, the neat crystal structure breaks into a complex three-dimensional web of crystal defects called "dislocation walls" that enclose cells of dislocation-free material. The effect is like micron-sized bubbles in foam. These complex dislocation structures are directly responsible for the mechanical properties of virtually all metals, and yet they remain very poorly understood in spite of decades of research. Twenty years ago, the German researcher Häel Mughrabi theorized that the stresses in the dislocation walls and the cell interiors would be different and have opposite signs--an important result for modeling the effects of shaping and working metal on its properties. Until now there has only been indirect evidence for Mughrabi's model because of the problem of precisely measuring stress at the micron level in individual cells in the dislocation structure.

At that level, in fact, stresses can vary greatly. "Scientifically, these stress fluctuations are probably the single most significant finding of the work since no previous measurements even hinted at their existence," explains NIST physicist and lead author Lyle Levine. "A few researchers had speculated that such variations might exist but they had no clue about their size and distribution."

The NIST/ORNL/USC team used intense X-ray microbeams--100 times thinner than a human hair--generated at the Advanced Photon Source at Argonne National Laboratory to scan samples of single-crystal copper that had been deliberately stressed. The diffracted X-rays revealed the local crystal lattice spacing, a measure of stress, at each point. As this happens, a thin platinum wire is moved across the face of the crystal. By noting which diffracted rays are blocked by the wire at which point, the team calculated the depth of the region diffracting the beam. They determined cell positions in three dimensions to within half a micron.

The experiments on both compressed and tensioned copper crystals agreed with Mughrabi's model. "One big advantage to this method is that the results are completely definitive. We can make unambiguous, quantitative measurements from the submicron sample volumes most pertinent to metals deformation," Levine says.

The new technique opens a detailed window into the microstructure of stress in metals and provides quantitative data to support computer models of mechanical stress.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>