Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research paves way for new composite materials

Northwestern University researchers have developed a process that promises to lead to the creation of a new class of composite materials -- "graphene-based materials."

The method uses graphite to produce individual graphene-based sheets with exceptional physical, chemical and barrier properties that could be mixed into materials such as polymers, glasses and ceramics.

The Northwestern team, led by materials scientist and physical chemist Rod Ruoff and composed of chemists, physicists and engineers, reports the results of their research in the July 20 issue of the journal Nature.

"This research provides a basis for developing a new class of composite materials for many applications, through tuning of their electrical and thermal conductivity, their mechanical stiffness, toughness and strength, and their permeability to flow various gases through them," said Ruoff, professor of mechanical engineering in the McCormick School of Engineering and Applied Science. "We believe that manipulating the chemical and physical properties of individual graphene-based sheets and effectively mixing them into other materials will lead to discoveries of new materials in the future."

The Northwestern team's approach to its challenge was based on chemically treating and thereby "exfoliating" graphite to individual layers. Graphite is a layered material of carbon with strong chemical bonds in the layers but with moderately weak bonds between the layers. The properties of the individual layers have been expected to be exceptional because the "in-plane" properties of graphite itself are exceptional, but until now it was not possible to extract such individual layers and to embed them as a filler material in materials such as polymers, and particularly not by a scalable route that could afford large quantities.

There are approximately one million metric tons of graphite sold annually around the world, and there are roughly 800 million metric tons of untapped natural graphite that could be mined and used in the future, according to the U.S. Geological Survey. Graphite is used in a wide variety of applications such as those related to friction (brake linings are one example), in gaskets, as a lubricant, and as an electrode material in the making of steel.

Megan Fellman | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>