Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research paves way for new composite materials

Northwestern University researchers have developed a process that promises to lead to the creation of a new class of composite materials -- "graphene-based materials."

The method uses graphite to produce individual graphene-based sheets with exceptional physical, chemical and barrier properties that could be mixed into materials such as polymers, glasses and ceramics.

The Northwestern team, led by materials scientist and physical chemist Rod Ruoff and composed of chemists, physicists and engineers, reports the results of their research in the July 20 issue of the journal Nature.

"This research provides a basis for developing a new class of composite materials for many applications, through tuning of their electrical and thermal conductivity, their mechanical stiffness, toughness and strength, and their permeability to flow various gases through them," said Ruoff, professor of mechanical engineering in the McCormick School of Engineering and Applied Science. "We believe that manipulating the chemical and physical properties of individual graphene-based sheets and effectively mixing them into other materials will lead to discoveries of new materials in the future."

The Northwestern team's approach to its challenge was based on chemically treating and thereby "exfoliating" graphite to individual layers. Graphite is a layered material of carbon with strong chemical bonds in the layers but with moderately weak bonds between the layers. The properties of the individual layers have been expected to be exceptional because the "in-plane" properties of graphite itself are exceptional, but until now it was not possible to extract such individual layers and to embed them as a filler material in materials such as polymers, and particularly not by a scalable route that could afford large quantities.

There are approximately one million metric tons of graphite sold annually around the world, and there are roughly 800 million metric tons of untapped natural graphite that could be mined and used in the future, according to the U.S. Geological Survey. Graphite is used in a wide variety of applications such as those related to friction (brake linings are one example), in gaskets, as a lubricant, and as an electrode material in the making of steel.

Megan Fellman | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

nachricht Boron can form a purely honeycomb, graphene-like 2-D structure
15.03.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>