Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sales method pays off for materials scientists--Data mining used to predict crystal structures

20.07.2006
The same computer methods used by online sales sites to suggest books to customers can help predict the crystal structures of materials, MIT researchers have found.

These structures are key to designing new materials and improving existing ones, which means that everything from batteries to airplane wings could be influenced by the new method.

The scientists report their findings in the July 9 online edition of Nature Materials.

Using a technique called data mining, the MIT team preloaded the entire body of historical knowledge of crystal structures into a computer algorithm, or program, which they had designed to make correlations among the data based on the underlying rules of physics.

Harnessing this knowledge, the program then delivers a list of possible crystal structures for any mixture of elements whose structure is unknown. The team can then run that list of possibilities through a second algorithm that uses quantum mechanics to calculate precisely which structure is the most stable energetically - a standard technique in the computer modeling of materials.

"We had at our disposal all of what is known about nature," said Professor Gerbrand Ceder of the Department of Materials Science and Engineering, leader of the research team. Ceder compared the database of crystal structures to the user database of an online bookseller, which can make correlations among millions of customers with similar interests. "If you tell me you've read these 10 books in the last year and you rate them, can I make some prediction about the next book you're going to like?"

The data-mining algorithm captures the physics of crystal structures in nature (provided by the preloaded database) and makes sophisticated correlations to generate an informed list of candidate structures based on historical knowledge. These candidate structures were previously assembled by scientists manually in a time-consuming and subjective process that often amounted to guesswork. The new algorithm, combined with a quantum mechanics algorithm, forms a two-pronged strategy that will make the process faster and more accurate.

Ceder's team of computational modelers can already determine, in the space of just a few days, atomic structures that might take months or even years to elucidate in the lab. In testing on known structures of just two elements, Ceder's group found the new algorithm could select five structures from 3,000-4,000 possibilities with a 90 percent chance of having the true structure among the five.

"It's all about probability and correlations," Ceder said. "Our algorithm gives us the crystal structure with a certain probability. The key was realizing we didn't need more than that. With a short list of candidate structures, I can solve the problem precisely with quantum mechanics."

According to Ceder, the new technique will enable a big leap forward in true computational design of materials with specific properties. For example, "If somebody wants to know whether a material is going to have the right bandgap to be a solar cell, I can't calculate the bandgap if I don't know the structure," he said. (Bandgap determines many properties such as electrical conductivity.) "And if I calculate the bandgap using the wrong structure, I may have a totally irrelevant answer. Properties depend on structure."

Contributing to the work were graduate students Christopher Fischer and Kevin Tibbetts, both of materials science and engineering, and former postdoctoral associate Dane Morgan, now at the University of Wisconsin at Madison.

This work was funded by the National Science Foundation and the Institute for Soldier Nanotechnologies.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>