Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sales method pays off for materials scientists--Data mining used to predict crystal structures

20.07.2006
The same computer methods used by online sales sites to suggest books to customers can help predict the crystal structures of materials, MIT researchers have found.

These structures are key to designing new materials and improving existing ones, which means that everything from batteries to airplane wings could be influenced by the new method.

The scientists report their findings in the July 9 online edition of Nature Materials.

Using a technique called data mining, the MIT team preloaded the entire body of historical knowledge of crystal structures into a computer algorithm, or program, which they had designed to make correlations among the data based on the underlying rules of physics.

Harnessing this knowledge, the program then delivers a list of possible crystal structures for any mixture of elements whose structure is unknown. The team can then run that list of possibilities through a second algorithm that uses quantum mechanics to calculate precisely which structure is the most stable energetically - a standard technique in the computer modeling of materials.

"We had at our disposal all of what is known about nature," said Professor Gerbrand Ceder of the Department of Materials Science and Engineering, leader of the research team. Ceder compared the database of crystal structures to the user database of an online bookseller, which can make correlations among millions of customers with similar interests. "If you tell me you've read these 10 books in the last year and you rate them, can I make some prediction about the next book you're going to like?"

The data-mining algorithm captures the physics of crystal structures in nature (provided by the preloaded database) and makes sophisticated correlations to generate an informed list of candidate structures based on historical knowledge. These candidate structures were previously assembled by scientists manually in a time-consuming and subjective process that often amounted to guesswork. The new algorithm, combined with a quantum mechanics algorithm, forms a two-pronged strategy that will make the process faster and more accurate.

Ceder's team of computational modelers can already determine, in the space of just a few days, atomic structures that might take months or even years to elucidate in the lab. In testing on known structures of just two elements, Ceder's group found the new algorithm could select five structures from 3,000-4,000 possibilities with a 90 percent chance of having the true structure among the five.

"It's all about probability and correlations," Ceder said. "Our algorithm gives us the crystal structure with a certain probability. The key was realizing we didn't need more than that. With a short list of candidate structures, I can solve the problem precisely with quantum mechanics."

According to Ceder, the new technique will enable a big leap forward in true computational design of materials with specific properties. For example, "If somebody wants to know whether a material is going to have the right bandgap to be a solar cell, I can't calculate the bandgap if I don't know the structure," he said. (Bandgap determines many properties such as electrical conductivity.) "And if I calculate the bandgap using the wrong structure, I may have a totally irrelevant answer. Properties depend on structure."

Contributing to the work were graduate students Christopher Fischer and Kevin Tibbetts, both of materials science and engineering, and former postdoctoral associate Dane Morgan, now at the University of Wisconsin at Madison.

This work was funded by the National Science Foundation and the Institute for Soldier Nanotechnologies.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>