Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sales method pays off for materials scientists--Data mining used to predict crystal structures

20.07.2006
The same computer methods used by online sales sites to suggest books to customers can help predict the crystal structures of materials, MIT researchers have found.

These structures are key to designing new materials and improving existing ones, which means that everything from batteries to airplane wings could be influenced by the new method.

The scientists report their findings in the July 9 online edition of Nature Materials.

Using a technique called data mining, the MIT team preloaded the entire body of historical knowledge of crystal structures into a computer algorithm, or program, which they had designed to make correlations among the data based on the underlying rules of physics.

Harnessing this knowledge, the program then delivers a list of possible crystal structures for any mixture of elements whose structure is unknown. The team can then run that list of possibilities through a second algorithm that uses quantum mechanics to calculate precisely which structure is the most stable energetically - a standard technique in the computer modeling of materials.

"We had at our disposal all of what is known about nature," said Professor Gerbrand Ceder of the Department of Materials Science and Engineering, leader of the research team. Ceder compared the database of crystal structures to the user database of an online bookseller, which can make correlations among millions of customers with similar interests. "If you tell me you've read these 10 books in the last year and you rate them, can I make some prediction about the next book you're going to like?"

The data-mining algorithm captures the physics of crystal structures in nature (provided by the preloaded database) and makes sophisticated correlations to generate an informed list of candidate structures based on historical knowledge. These candidate structures were previously assembled by scientists manually in a time-consuming and subjective process that often amounted to guesswork. The new algorithm, combined with a quantum mechanics algorithm, forms a two-pronged strategy that will make the process faster and more accurate.

Ceder's team of computational modelers can already determine, in the space of just a few days, atomic structures that might take months or even years to elucidate in the lab. In testing on known structures of just two elements, Ceder's group found the new algorithm could select five structures from 3,000-4,000 possibilities with a 90 percent chance of having the true structure among the five.

"It's all about probability and correlations," Ceder said. "Our algorithm gives us the crystal structure with a certain probability. The key was realizing we didn't need more than that. With a short list of candidate structures, I can solve the problem precisely with quantum mechanics."

According to Ceder, the new technique will enable a big leap forward in true computational design of materials with specific properties. For example, "If somebody wants to know whether a material is going to have the right bandgap to be a solar cell, I can't calculate the bandgap if I don't know the structure," he said. (Bandgap determines many properties such as electrical conductivity.) "And if I calculate the bandgap using the wrong structure, I may have a totally irrelevant answer. Properties depend on structure."

Contributing to the work were graduate students Christopher Fischer and Kevin Tibbetts, both of materials science and engineering, and former postdoctoral associate Dane Morgan, now at the University of Wisconsin at Madison.

This work was funded by the National Science Foundation and the Institute for Soldier Nanotechnologies.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>