Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT scientists create fiber webs that see

19.07.2006
In a radical departure from conventional lens-based optics, MIT scientists have developed a sophisticated optical system made of mesh-like webs of light-detecting fibers. The fiber constructs, which have a number of advantages over their lens-based predecessors, are currently capable of measuring the direction, intensity and phase of light (a property used to describe a light wave) without the lenses, filters or detector arrays that are the classic elements of optical systems such as eyes or cameras.

Ultimately the researchers expect the new system will be capable of much more, with potential applications ranging from improved space telescopes to clothing that provides situational awareness to soldiers or even the visually impaired.

The transparent fiber-webs could even enable huge computer screens to be activated with beams of light instead of the touch of a finger. "We could use light to enhance interaction with computers and even gaming systems," said Professor Yoel Fink of the Department of Materials Science and Engineering and the Research Lab of Electronics, leader of the team. "It's intriguing--the idea of touching with light."

The scientists report the work in the June 25 online edition of Nature Materials, and it is featured on the cover of the July print issue of the magazine.

The human eye, digital and film cameras, and even the Hubble space telescope rely on lenses and detector surfaces (like the retina) to create images. But while these systems deliver excellent images, they are constrained by their size, weight, fragility and limited field of view.

In contrast, the fiber webs are flexible and lightweight. Plus, a fiber web in the shape of a sphere can sense the entire volume of space around it, according to Fink.

"When you're looking at something with your eyes, there's a particular direction you're looking in," says Ayman Abouraddy a research scientist in Fink's lab. "The field of view is defined around that direction. Depending on the lens, you may be able to capture a certain field of view around that direction, but that's it. Until now, most every optical system was limited by an optical axis or direction."

In addition to having an unlimited field of view, the fiber sphere can also detect the direction of incoming light. Light enters the transparent sphere at one point and exits at another, providing a directional reference back to the light source.

Fink's team has also created a flat, two-dimensional web of fibers and placed two such webs in parallel. These constructs, which can measure the intensity of incoming light, are capable of generating rough images of objects placed near them, such as the shape of a letter "E" cut stencil-like from paper and lit from behind. The image shows up on a computer screen, reconstructed from a light intensity distribution measured by the webs.

The fibers used in the webs are about 1 millimeter in diameter. They consist of a photoconductive glass core with metal electrodes that run along the length of the core, all surrounded by a transparent polymer insulator.

The fibers can detect light anywhere along their length, producing a change in current in an external electrical circuit. While one fiber on its own cannot detect the exact location of an incoming beam of light, when many fibers are arrayed in a web, their points of intersection provide the exact coordinates of the beam. A computer assimilates the data generated by the web and translates it for the user. If the fibers were woven into a textile, for instance, an embedded computer could provide information on a small display screen or even audibly.

Improving the imaging power of the fiber webs will require reducing the diameter of the fibers and creating denser webs. Fink says he's not certain whether the new technology will one day replicate human vision. "Just the idea of imaging with a transparent object is a true eye opener," he said.

Fink's colleagues on the work are John Joannopoulos, the Francis Wright Davis Professor of Physics and a member of the Research Lab of Electronics (RLE), RLE research scientists Ayman Abouraddy and Mehmet Bayindir (now a faculty member at Bilkent University, Turkey), graduate students Ofer Shapira of the Department of Electrical Engineering and Computer Science, and Fabien Sorin, of the Department of Materials Science and Engineering, RLE research assistant Jerimy Arnold and Dursen Hinczewski (now at Istanbul Technical University, Turkey). Yigal Migdal assembled the sphere.

This work is funded by the MIT Institute for Soldier Nanotechnologies, the U.S. Department of Energy, the Defense Advanced Research Projects Agency, and the National Science Foundation.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>