Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-cooling soda bottles?

13.07.2006
Researchers work to shrink technology that harnesses sun's energy to both heat and cool

Every day, the sun bathes the planet in energy--free of charge--yet few systems can take advantage of that source for both heating and cooling. Now, researchers are making progress on a thin-film technology that adheres both solar cells and heat pumps onto surfaces, ultimately turning walls, windows, and maybe even soda bottles into climate control systems.

On July 12, 2006, Rensselaer Polytechnic Institute (RPI) researcher Steven Van Dessel and his colleagues will announce their most recent progress--including a computer model to help them simulate the climate within their test structure atop the RPI Student Union--at the Solar 2006 Conference in Denver, Colo.

For 4 years, the researchers have been working on their prototype Active Building Envelope (ABE) system. Comprised of solar panels, solid-state, thermoelectric heat pumps and a storage device to provide energy on rainy days (literally), the ABE system accomplishes the jobs of both cooling and heating, yet operates silently with no moving parts. NSF is supporting the team to determine if a microscale version of the technology will function effectively.

According to Van Dessel, thin-film advances could potentially lead to functional thermal coatings composed of transparent ABE systems. Such systems might vastly improve the efficiency of temperature-control systems.

"The ease of application would make it possible to seamlessly attach the system to various building surfaces," he added, "possibly rendering conventional air conditioning and heating equipment obsolete."

Van Dessel hopes a thin-film version of the ABE system will see uses in a range of industries, from aerospace--in advanced thermal control systems in future space missions--to the automotive industry, where it could be applied to windshields and sun roofs, giving them the ability to heat or cool a car's interior.

"It also may be possible to one day use the ABE system to create packaging materials for thermal control," he added, "which could lead to things like self-cooling soda bottles."

Josh Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>