Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding about cellular microtubule rigidity could lead to development of new nano-materials

12.07.2006
Microtubules, essential structural elements in living cells, grow stiffer as they grow longer, an unexpected property that could lead to advances in nano-materials development, an international team of biophysicists has found.

The team, from The University of Texas at Austin, the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany and Ludwig Maximilians University of Munich, reported their findings in Proceedings of the National Academy of Science on July 5.

"We found that the microtubules grow stiffer as they grow longer, a very unusual and surprising result," said Ernst-Ludwig Florin, assistant professor with the Center of Nonlinear Dynamics at The University of Texas at Austin. "This will have a big impact on our understanding of how microtubules function in the cell and on advancing materials research.

"To my knowledge, no manmade material has this property--to become stiffer as it elongates," said Florin. "This research could lead to the design of novel materials based on this biological structure."

Microtubules, which are about 25 nanometers in diameter, play an essential role in many cellular processes, acting as girders of support for the cell and tracks along which organelles--structures in cells that perform specialized functions--can move. They are also essential components of flagella and cilia, the extensions of some cells that give them movement.

Florin and his colleagues measured the stiffness and length of cellular microtubules using a "single-particle tracking" technique. They attached yellow-green fluorescent beads to the tips of microtubules of various lengths and measured the position of the bead by analyzing frame-by-frame videos of the beads moving in solution. (The beads were 250 or 500 nanometers in diameter.)

The changes in the beads' position were used to calculate the stiffness of the filaments they were attached to, through a method recently developed by the theoretical physicists on the research team.

To the surprise of the scientists, they found that the longer the filament, the more rigid it became.

Florin and his coauthors attribute the microtubules' unique properties to their molecular architecture. The nanometer-sized filaments are hollow tubes made of tubulin proteins that bind to each other in ways that give them the ability to be both flexible and stiff. Flexibility is important for microtubules as they grow and change in cells, while rigidity is important when cells need support.

"Microtubules are optimally designed to give the maximum of mechanical performance at a minimum cost for the cell," said Francesco Pampaloni, a physical chemist at EMBL.

The new finding about the microtubules' properties could provide insights into using the filaments as models for the development of nano-materials.

Ernst-Ludwig Florin | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>