Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding about cellular microtubule rigidity could lead to development of new nano-materials

12.07.2006
Microtubules, essential structural elements in living cells, grow stiffer as they grow longer, an unexpected property that could lead to advances in nano-materials development, an international team of biophysicists has found.

The team, from The University of Texas at Austin, the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany and Ludwig Maximilians University of Munich, reported their findings in Proceedings of the National Academy of Science on July 5.

"We found that the microtubules grow stiffer as they grow longer, a very unusual and surprising result," said Ernst-Ludwig Florin, assistant professor with the Center of Nonlinear Dynamics at The University of Texas at Austin. "This will have a big impact on our understanding of how microtubules function in the cell and on advancing materials research.

"To my knowledge, no manmade material has this property--to become stiffer as it elongates," said Florin. "This research could lead to the design of novel materials based on this biological structure."

Microtubules, which are about 25 nanometers in diameter, play an essential role in many cellular processes, acting as girders of support for the cell and tracks along which organelles--structures in cells that perform specialized functions--can move. They are also essential components of flagella and cilia, the extensions of some cells that give them movement.

Florin and his colleagues measured the stiffness and length of cellular microtubules using a "single-particle tracking" technique. They attached yellow-green fluorescent beads to the tips of microtubules of various lengths and measured the position of the bead by analyzing frame-by-frame videos of the beads moving in solution. (The beads were 250 or 500 nanometers in diameter.)

The changes in the beads' position were used to calculate the stiffness of the filaments they were attached to, through a method recently developed by the theoretical physicists on the research team.

To the surprise of the scientists, they found that the longer the filament, the more rigid it became.

Florin and his coauthors attribute the microtubules' unique properties to their molecular architecture. The nanometer-sized filaments are hollow tubes made of tubulin proteins that bind to each other in ways that give them the ability to be both flexible and stiff. Flexibility is important for microtubules as they grow and change in cells, while rigidity is important when cells need support.

"Microtubules are optimally designed to give the maximum of mechanical performance at a minimum cost for the cell," said Francesco Pampaloni, a physical chemist at EMBL.

The new finding about the microtubules' properties could provide insights into using the filaments as models for the development of nano-materials.

Ernst-Ludwig Florin | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>