Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding about cellular microtubule rigidity could lead to development of new nano-materials

12.07.2006
Microtubules, essential structural elements in living cells, grow stiffer as they grow longer, an unexpected property that could lead to advances in nano-materials development, an international team of biophysicists has found.

The team, from The University of Texas at Austin, the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany and Ludwig Maximilians University of Munich, reported their findings in Proceedings of the National Academy of Science on July 5.

"We found that the microtubules grow stiffer as they grow longer, a very unusual and surprising result," said Ernst-Ludwig Florin, assistant professor with the Center of Nonlinear Dynamics at The University of Texas at Austin. "This will have a big impact on our understanding of how microtubules function in the cell and on advancing materials research.

"To my knowledge, no manmade material has this property--to become stiffer as it elongates," said Florin. "This research could lead to the design of novel materials based on this biological structure."

Microtubules, which are about 25 nanometers in diameter, play an essential role in many cellular processes, acting as girders of support for the cell and tracks along which organelles--structures in cells that perform specialized functions--can move. They are also essential components of flagella and cilia, the extensions of some cells that give them movement.

Florin and his colleagues measured the stiffness and length of cellular microtubules using a "single-particle tracking" technique. They attached yellow-green fluorescent beads to the tips of microtubules of various lengths and measured the position of the bead by analyzing frame-by-frame videos of the beads moving in solution. (The beads were 250 or 500 nanometers in diameter.)

The changes in the beads' position were used to calculate the stiffness of the filaments they were attached to, through a method recently developed by the theoretical physicists on the research team.

To the surprise of the scientists, they found that the longer the filament, the more rigid it became.

Florin and his coauthors attribute the microtubules' unique properties to their molecular architecture. The nanometer-sized filaments are hollow tubes made of tubulin proteins that bind to each other in ways that give them the ability to be both flexible and stiff. Flexibility is important for microtubules as they grow and change in cells, while rigidity is important when cells need support.

"Microtubules are optimally designed to give the maximum of mechanical performance at a minimum cost for the cell," said Francesco Pampaloni, a physical chemist at EMBL.

The new finding about the microtubules' properties could provide insights into using the filaments as models for the development of nano-materials.

Ernst-Ludwig Florin | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>