Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick Reaction "Chromophores" Emerge as New Class of Semiconductors, Suitable for Nanoscale Electronics

04.07.2006
The future of high-speed electronics might very well be defined by linking together small, "electrically jumpy" molecules called chromophores. According to researchers at the University of Pennsylvania and St. Josephs University, electrical charges can zip along chains of linked chromophores faster than any electrical charge yet observed in organic semiconductors, beating the previous benchmark in this regard by a factor of three. Their findings suggest the use of chromophore-based circuitry that could create nano-sized electronic components for numerous applications. Their findings are presented in the current issue of the Journal of the American Chemical Society.

In chemistry, a chromophore is any molecule or part of a molecule responsible for its color. Light hitting a chromophore excites an electron, which then emits light of a particular color.

"Here we have created chains of chromophores that are primed to move charge," said Michael J. Therien, a professor in Penn's Department of Chemistry and lead researcher in the project. "When a charge is introduced to an array of chromophores linked closely together, it enables electrons to quickly hop from one chromophore to the next."

A charge can travel down a chain of chromophores at a rate of about 10 million times a second, which means that these chromophore arrays can do anything that organic semiconductors currently do, only much faster.

Penn researchers Kimihiro Susumu and Paul Frail built chromophore circuits that could, for example, serve as the functional elements in disposable plastic electronics, radio frequency identification tags, electronic drivers for active-matrix liquid crystal displays and organic light-emitting diodes as well as for lightweight solar cells.

Therien and his colleagues have found that the key to creating materials that allow electrons to move so quickly and freely is to build structures that feature long chromophores and short linkers between these units.

"This arrangement of linked chromophores leads to small structural changes when holes (positive charges) and electrons (negative charges) are introduced into these structures and these physical changes help propagate the charge," said Paul Angiolillo of St. Josephs University, co-author of the study. "The introduction of these structural changes is actually a new idea in the design of conducting and semi-conducting organic materials."

The semiconductor industry is well aware of potential barriers to creating faster and faster electronics. In terms of circuitry, size directly relates to speed. Currently, circuits based on semiconductors have shrunk to dimensions just below 100 nanometers, or one hundred billionths of a meter, across. Chromophores may represent the first relatively easy-to-use materials that function on the nanoscale.

"In order to move significantly past the 100-nano barrier in electronics, we need to develop nano structures that let electrons move, as they do through wires and semiconductors," Therien said. "Our work also shows for the first time that molecular conductive elements can be produced on a 10-nanometer length scale, providing an important functional element for nanoscale circuitry."

This research was supported by the Department of Energy and the National Science Foundation.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Materials Sciences:

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

nachricht Wonder material? Novel nanotube structure strengthens thin films for flexible electronics
24.04.2017 | University of Illinois College of Engineering

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>