Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal’s Strange Behavior Could Enable Chemical Cleanup

18.12.2001


Logic dictates that when you increase the pressure acting on a material, it should compact. So a report from an international team of scientists that they have discovered a crystal formation that expands under pressure is intriguing. The counterintuitive behavior may be exploited to make a crystal sponge for chemical cleanup.



Images: ©Journal of the American Chemical Society/Courtesy BNL



Writing in the December 19 issue of the Journal of the American Chemical Society, the researchers describe the behavior of natrolite, a type of zeolite, under increasing pressure. Zeolites are solids characterized by a three-dimensional structure containing regularly spaced pores within the molecular framework of atoms that includes aluminum, silicon and oxygen (see top image). When the scientists subjected natrolite to pressures up to 50,000 times the normal atmospheric pressure between two diamonds, the material initially compressed, as expected. But when the pressure ranged between eight and 15 thousand times atmospheric pressure, the crystal expanded (bottom image). "This is not supposed to happen," co-author Thomas Vogt of Brookhaven National Laboratory says. "Normally, when you squeeze something, it’s supposed to get smaller. This stuff gets bigger." As the pressure increased, the material compressed further.

An X-ray analysis suggests that the material expanded because extra water molecules were squeezed into the pores within the natrolite. Terming the unusual property pressure-induced expansion, the team suggests that the material may be used to mop up chemical or radioactive pollutants. "When you increase the pressure and the material gets bigger, the pores get bigger, too," co-author Joseph Hriljac of the University of Birmingham explains. If pollutant molecules enter the structure, he says, "when you release the pressure, the pore would get smaller and trap the pollutants inside."

Sarah Graham | Scientific American
Further information:
http://www.sciam.com/news/121701/1.html

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>