Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crystal’s Strange Behavior Could Enable Chemical Cleanup


Logic dictates that when you increase the pressure acting on a material, it should compact. So a report from an international team of scientists that they have discovered a crystal formation that expands under pressure is intriguing. The counterintuitive behavior may be exploited to make a crystal sponge for chemical cleanup.

Images: ©Journal of the American Chemical Society/Courtesy BNL

Writing in the December 19 issue of the Journal of the American Chemical Society, the researchers describe the behavior of natrolite, a type of zeolite, under increasing pressure. Zeolites are solids characterized by a three-dimensional structure containing regularly spaced pores within the molecular framework of atoms that includes aluminum, silicon and oxygen (see top image). When the scientists subjected natrolite to pressures up to 50,000 times the normal atmospheric pressure between two diamonds, the material initially compressed, as expected. But when the pressure ranged between eight and 15 thousand times atmospheric pressure, the crystal expanded (bottom image). "This is not supposed to happen," co-author Thomas Vogt of Brookhaven National Laboratory says. "Normally, when you squeeze something, it’s supposed to get smaller. This stuff gets bigger." As the pressure increased, the material compressed further.

An X-ray analysis suggests that the material expanded because extra water molecules were squeezed into the pores within the natrolite. Terming the unusual property pressure-induced expansion, the team suggests that the material may be used to mop up chemical or radioactive pollutants. "When you increase the pressure and the material gets bigger, the pores get bigger, too," co-author Joseph Hriljac of the University of Birmingham explains. If pollutant molecules enter the structure, he says, "when you release the pressure, the pore would get smaller and trap the pollutants inside."

Sarah Graham | Scientific American
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>