Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Triple threat polymer captures and releases

14.06.2006
A chemist at Washington University in St. Louis has developed a remarkable nanostructured material that can repel pests, sweeten the air, and some day might even be used as a timed drug delivery system — as a nasal spray, for instance.
Karen L. Wooley, Ph.D., Washington University James S. McDonnell Distinguished University Professor in Arts & Sciences, has taken the same materials that she developed more than four years ago as marine "antifouling" coatings that inhibit marine organisms such as barnacles from attaching to ship hulls to now capture fragrance molecules and release them at room temperature.

Wooley mixes two normally incompatible polymers — a hyperbranched fluoropolymer and a linear polyethylene glycol — and lets them phase-separate into distinct domains, one interspersed in the other. A chemical process called crosslinking then solidifies the mixture, thus creating a heterogeneous coating that, upon close examination, reveals treacherous nanometer-sized terrain composed of mountains and valleys, ranging from hard to soft, hydrophilic to hydrophobic. The complex surface that is created makes it difficult for marine organisms to establish a toehold. Her laboratory has produced these novel materials and they are being used around the world

Wooley and her collaborators were intrigued by the surface of these nanostructured materials and began to wonder what was beneath the surface. They found that their materials made a perfect host to serve guest molecules.

"We looked at the roughness and complexity of the surface and thought that the surface might provide interesting entrance and exit ports for small molecule guests," Wooley explained. "So, our material would be a host that would act like a sponge, because we have this complex subsurface morphology, and we thought of it as being domains that might be like holes in sponges and other domains that might be like sponge material."

Be my guest

The subsurface composition and properties might thereby allow the guests to partition off into one domain and then another guest partition into another domain.

"We have these channels to serve as capillaries to take in guest molecules and hold them inside the material," said Wooley, a member of Washington University's Center for Materials Innovation, (CMI) which enables collaborators from across the Washington University campus to make basic and applied advances in materials research, touching many aspects of daily life.

She and her group received a research grant from Imperial Chemical Industries/National Starch to continue their study, with a goal of taking the guest molecules in and holding them. Using the technology of thermogravimetric analysis (TGA), Gerald O. Brown, Ph.D., a postdoctoral research associate in Wooley's group, began analyzing the release of these guests — fragrance molecules — as gaseous small molecules from the polymer across the network of the host material.

"We found that the temperatures at which the guests left the material were dependent on the composition of the host, and when the release of the small guest molecules was monitored from just an empty TGA pan, there was a slight difference versus those guests in the presence of either the hyperbranched fluoropolymer or the polyethylene glycol," she said. "There is a slight depression of temperature at which the small molecule fragrance volatilizes and becomes a gas."

However, when they looked at the complex materials — the ones designed to be anti-fouling materials — they found a progression of decreasing temperature as they went with different amounts of poly (ethylene glycol) relative to hyperbranched fluoropolymer in the composite material.

"What's amazing is that there is a 55 degree temperature reduction at which this small molecule leaves the host material versus it leaving an empty pan," she said. "Then we thought that this material could be very useful as something to promote the release of a volatile agent — maybe for some kind of nasal inhalation-based delivery of drugs. Or maybe something as simple as a room-temperature release of a fragrance."

Sponge analogy

Wooley said that they don't know where the guest molecules are residing in the host material, and her group is now inserting stable isotopes into the host and guest molecules and with the help of her colleague Jacob Schaefer, Ph.D., Washington University Charles Allen Thomas Professor of Chemistry, will measure the difference between those stable isotopes to help find where the guests are located relative to the host.

"We want to know where they reside because that should tell us why this material is providing a favorable environment at room temperature but at elevated temperature for some reason everything is being expelled rapidly," she said. "We don't know if there is some reorganization of the morphology of the material or whether the guests partition to different domains at different temperatures."

Wooley says that the results of her research with the polymers — the promoted release, the anti-fouling application — are "strange, if not weird, but there is so much going on here, we want to explore it all."

That weirdness suggests equally weird mechanical properties. Wooley and her post doctoral researcher Jinqi Xu, Ph.D., are exploring those properties and one essential irony — the material, similar to a hydrogel because it takes in water, oddly becomes stronger when water absorbs into it. Think of a soggy diaper as a hydrogel. If you liken Wooley's materials to a diaper, that wet one becomes nearly petrified. That's known as an increased modulus value — a measure of stress versus strain.

"When you pull on a sponge, the water comes back out," she said. "But in our case, because our sponge and the channels within it are essentially nanoscopic, the water cannot get out, at least not fast enough to allow for a reorganization of the material, and therefore it just rigidifies the material."

Xu made a presentation on this research at the 2006 Spring Meeting of the American Chemical Society (ACS), held March 26-30 in Atlanta. Wooley and her collaborators published a communication on the research in the Journal of the American Chemical Society, 2005, 127, 11238-11239.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Materials Sciences:

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>